Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Connect ; 14(4): 209-225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38534961

RESUMEN

Introduction: The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. Materials and Methods: Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms "subventricular zone" and "multiple sclerosis," including English-written in vivo and postmortem studies. Results: Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. Discussion: Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. Conclusion: The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.


Asunto(s)
Esclerosis Múltiple , Células-Madre Neurales , Neurogénesis , Oligodendroglía , Animales , Humanos , Diferenciación Celular/fisiología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Ventrículos Laterales/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Células-Madre Neurales/patología , Neurogénesis/fisiología , Oligodendroglía/patología , Oligodendroglía/metabolismo
2.
Cells ; 12(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37566075

RESUMEN

The regulation of the immune environment within the tumor microenvironment has provided new opportunities for cancer treatment. However, an important microenvironment surrounding cancer that is often overlooked despite its significance in cancer progression is the neural environment surrounding the tumor. The release of neurotrophic factors from cancer cells is implicated in cancer growth and metastasis by facilitating the infiltration of nerve cells into the tumor microenvironment. This nerve-tumor interplay can elicit cancer cell proliferation, migration, and invasion in response to neurotransmitters. Moreover, it is possible that cancer cells could establish a network resembling that of neurons, allowing them to communicate with one another through neurotransmitters. The expression levels of players in the neural circuits of cancers could serve as potential biomarkers for cancer aggressiveness. Notably, the upregulation of certain players in the neural circuit has been linked to poor prognosis in specific cancer types such as breast cancer, pancreatic cancer, basal cell carcinoma, and stomach cancer. Targeting these players with inhibitors holds great potential for reducing the morbidity and mortality of these carcinomas. However, the efficacy of anti-neurogenic agents in cancer therapy remains underexplored, and further research is necessary to evaluate their effectiveness as a novel approach for cancer treatment. This review summarizes the current knowledge on the role of players in the neural circuits of cancers and the potential of anti-neurogenic agents for cancer therapy.

3.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35454883

RESUMEN

The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.

4.
Front Cell Dev Biol ; 9: 737735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650986

RESUMEN

The transcription factor p73 is a structural and functional homolog of TP53, the most famous and frequently mutated tumor-suppressor gene. The TP73 gene can synthesize an overwhelming number of isoforms via splicing events in 5' and 3' ends and alternative promoter usage. Although it originally came into the spotlight due to the potential of several of these isoforms to mimic p53 functions, it is now clear that TP73 has its own unique identity as a master regulator of multifaceted processes in embryonic development, tissue homeostasis, and cancer. This remarkable functional pleiotropy is supported by a high degree of mechanistic heterogeneity, which extends far-beyond the typical mode of action by transactivation and largely relies on the ability of p73 isoforms to form protein-protein interactions (PPIs) with a variety of nuclear and cytoplasmic proteins. Importantly, each p73 isoform carries a unique combination of functional domains and residues that facilitates the establishment of PPIs in a highly selective manner. Herein, we summarize the expanding functional repertoire of TP73 in physiological and oncogenic processes. We emphasize how TP73's ability to control neurodevelopment and neurodifferentiation is co-opted in cancer cells toward neoneurogenesis, an emerging cancer hallmark, whereby tumors promote their own innervation. By further exploring the canonical and non-canonical mechanistic patterns of p73, we apprehend its functional diversity as the result of a sophisticated and coordinated interplay of: (a) the type of p73 isoforms (b) the presence of p73 interaction partners in the cell milieu, and (c) the architecture of target gene promoters. We suppose that dysregulation of one or more of these parameters in tumors may lead to cancer initiation and progression by reactivating p73 isoforms and/or p73-regulated differentiation programs thereof in a spatiotemporally inappropriate manner. A thorough understanding of the mechanisms supporting p73 functional diversity is of paramount importance for the efficient and precise p73 targeting not only in cancer, but also in other pathological conditions where TP73 dysregulation is causally involved.

5.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946706

RESUMEN

During development, as tissues expand and grow, they require circulatory, lymphatic, and nervous system expansion for proper function and support. Similarly, as tumors arise and develop, they also require the expansion of these systems to support them. While the contribution of blood and lymphatic systems to the development and progression of cancer is well known and is targeted with anticancer drugs, the contribution of the nervous system is less well studied and understood. Recent studies have shown that the interaction between neurons and a tumor are bilateral and promote metastasis on one hand, and the formation of new nerve structures (neoneurogenesis) on the other. Substances such as neurotransmitters and neurotrophins being the main actors in such interplay, it seems reasonable to expect that alternative splicing and the different populations of protein isoforms can affect tumor-derived neurogenesis. Here, we report the different, documented ways in which neurons contribute to the development and progression of cancer and investigate what is currently known regarding cancer-neuronal interaction in several specific cancer types. Furthermore, we discuss the incidence of alternative splicing that have been identified as playing a role in tumor-induced neoneurogenesis, cancer development and progression. Several examples of changes in alternative splicing that give rise to different isoforms in nerve tissue that support cancer progression, growth and development have also been investigated. Finally, we discuss the potential of our knowledge in alternative splicing to improve tumor diagnosis and treatment.

6.
Cells ; 10(2)2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672617

RESUMEN

Surgery remains an essential therapeutic approach for most solid malignancies. Although for more than a century accumulating clinical and experimental data have indicated that surgical procedures themselves may promote the appearance and progression of recurrent and metastatic lesions, only in recent years has renewed interest been taken in the mechanism by which metastasizing of cancer occurs following operative procedures. It is well proven now that surgery constitutes a risk factor for the promotion of pre-existing, possibly dormant micrometastases and the acceleration of new metastases through several mechanisms, including the release of neuroendocrine and stress hormones and wound healing pathway-associated immunosuppression, neovascularization, and tissue remodeling. These postoperative consequences synergistically facilitate the establishment of new metastases and the development of pre-existing micrometastases. While only in recent years the role of the peripheral nervous system has been recognized as another contributor to cancer development and metastasis, little is known about the contribution of tumor-associated neuronal and neuroglial elements in the metastatic disease related to surgical trauma and wound healing. Specifically, although numerous clinical and experimental data suggest that biopsy- and surgery-induced wound healing can promote survival and metastatic spread of residual and dormant malignant cells, the involvement of the tumor-associated neuroglial cells in the formation of metastases following tissue injury has not been well understood. Understanding the clinical significance and underlying mechanisms of neuroimmune regulation of surgery-associated metastasis will not only advance the field of neuro-immuno-oncology and contribute to basic science and translational oncology research but will also produce a strong foundation for developing novel mechanism-based therapeutic approaches that may protect patients against the oncologically adverse effects of primary tumor biopsy and excision.


Asunto(s)
Metástasis de la Neoplasia/patología , Sistema Nervioso/inmunología , Procedimientos Quirúrgicos Operativos/efectos adversos , Animales , Progresión de la Enfermedad , Humanos , Neoplasias/patología , Neoplasias/cirugía , Sistema Nervioso Periférico/patología
7.
J Leukoc Biol ; 109(6): 1089-1103, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33031589

RESUMEN

DNA methylation is a comprehensively studied epigenetic modification and plays crucial roles in cancer development. In the present study, MethylCap-seq was used to characterize the genome-wide DNA methylation patterns in canine high-grade B-cell lymphoma (cHGBL). Canine methylated DNA fragments were captured and the MEDIUM-HIGH and LOW fraction of methylated DNA was obtained based on variation in CpG methylation density. In the MEDIUM-HIGH and LOW fraction, 2144 and 1987 cHGBL-specific hypermethylated genes, respectively, were identified. Functional analysis highlighted pathways strongly related to oncogenesis. The relevant signaling pathways associated with neuronal system were also revealed, echoing recent novel findings that neurogenesis plays key roles in tumor establishment. In addition, 14 genes were hypermethylated in all the cHGBL cases but not in the healthy dogs. These genes might be potential signatures for tracing cHGBL, and some of them have been reported to play roles in various types of cancers. Further, the distinct methylation pattern of cHGBL showed a concordance with the clinical outcome, suggesting that aberrant epigenetic changes may influence tumor behavior. In summary, our study characterized genome-wide DNA methylation patterns using MethylCap-seq in cHGBL; the findings suggest that specific DNA hypermethylation holds promise for dissecting tumorigenesis and uncovering biomarkers for monitoring the progression of cHGBL.


Asunto(s)
Metilación de ADN , Enfermedades de los Perros/genética , Enfermedades de los Perros/patología , Epigénesis Genética , Epigenómica , Estudio de Asociación del Genoma Completo , Linfoma de Células B/veterinaria , Animales , Transformación Celular Neoplásica/genética , Islas de CpG , Perros , Epigenómica/métodos , Estudio de Asociación del Genoma Completo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Clasificación del Tumor , Análisis de Secuencia de ADN
8.
Cancers (Basel) ; 12(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339112

RESUMEN

Mechanisms governing tumor progression differ from those of initiation. One enigmatic prometastatic process is the recapitulation of pathways of neural plasticity in aggressive stages. Cancer and neuronal cells develop reciprocal interactions via mutual production and secretion of neuronal growth factors, neurothrophins and/or axon guidance molecules in the tumor microenvironment. Understanding cancer types where this process is active, as well as the drivers, markers and underlying mechanisms, has great significance for blocking tumor progression and improving patient survival. By applying computational and systemic approaches, in combination with experimental validations, we provide compelling evidence that genes involved in neuronal development, differentiation and function are reactivated in tumors and predict poor patient outcomes across various cancers. Across cancers, they co-opt genes essential for the development of distinct anatomical parts of the nervous system, with a frequent preference for cerebral cortex and neural crest-derived enteric nerves. Additionally, we show that p73, a transcription factor with a dual role in neuronal development and cancer, simultaneously induces neurodifferentiation and stemness markers during melanoma progression. Our data yield the basis for elucidating driving forces of the nerve-tumor cell crosstalk and highlight p73 as a promising regulator of cancer neurobiology.

9.
Curr Osteoporos Rep ; 16(6): 648-656, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30343404

RESUMEN

PURPOSE OF REVIEW: Sensory nerves (SNs) richly innervate bone and are a component of bone microenvironment. Cancer metastasis in bone, which is under the control of the crosstalk with bone microenvironment, induces bone pain via excitation of SNs innervating bone. However, little is known whether excited SNs in turn affect bone metastasis. RECENT FINDINGS: Cancer cells colonizing bone promote neo-neurogenesis of SNs and excite SNs via activation of the acid-sensing nociceptors by creating pathological acidosis in bone, evoking bone pain. Denervation of SNs or inhibition of SN excitation decreases bone pain and cancer progression and increases survival in preclinical models. Importantly, patients with cancers with increased SN innervation complain of cancer pain and show poor outcome. SNs establish the crosstalk with cancer cells to contribute to bone pain and cancer progression in bone. Blockade of SN excitation may have not only analgesic effects on bone pain but also anti-cancer actions on bone metastases.


Asunto(s)
Neoplasias Óseas/patología , Huesos/inervación , Células Receptoras Sensoriales/patología , Microambiente Tumoral , Humanos , Invasividad Neoplásica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA