Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667286

RESUMEN

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Sinapsis , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/terapia , Ratas , Sinapsis/metabolismo , Masculino , Neuritas/metabolismo , Encéfalo/patología , Isquemia Encefálica/terapia , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/patología
2.
ACS Appl Bio Mater ; 6(12): 5644-5661, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37993284

RESUMEN

In this work, the glycine-based acryloyl monomer is polymerized to obtain a neurogenic polymeric hydrogel for regenerative applications. The synthesized poly(N-acryloylglycine-acrylamide) [poly(NAG-b-A)] nanohydrogel exhibits high swelling (∼1500%) and is mechanically very stable, biocompatible, and proliferative in nature. The poly(NAG-b-A) nanohydrogel provides a stable 3D extracellular mimetic environment and promotes healthy neurite growth for primary cortical neurons by facilitating cellular adhesion, proliferation, actin filament stabilization, and neuronal differentiation. Furthermore, the protective role of the poly(NAG-b-A) hydrogel for the neurons in oxidative stress conditions is revealed and it is found that it is a clinically relevant material for neuronal regenerative applications, such as for promoting nerve regeneration via GSK3ß inhibition. This hydrogel additionally plays an important role in modulating the biological microenvironment, either as an agonist and antagonist or as an antioxidant. Furthermore, it favors the physiological responses and eases the neurite growth efficiency. Additionally, we found out that the conversion of glycine-based acryloyl monomers into their corresponding polymer modulates the mechanical performance, mimics the cellular microenvironment, and accelerates the self-healing capability due to the responsive behavior towards reactive oxygen species (ROS). Thus, the p(NAG-b-A) hydrogel could be a potential candidate to induce neuronal regeneration since it provides a physical cue and significantly boosts neurite outgrowth and also maintains the microtubule integrity in neuronal cells.


Asunto(s)
Hidrogeles , Neuritas , Hidrogeles/farmacología , Hidrogeles/metabolismo , Neuritas/metabolismo , Acrilamida , Estrés Oxidativo , Microambiente Celular , Polímeros/farmacología , Polímeros/metabolismo , Glicina/farmacología
3.
Transl Pediatr ; 12(6): 1278-1287, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37427056

RESUMEN

Background: The neurite extension and migration factor (NEXMIF) gene encodes the neurite growth-directed factor whose main function is to play a role in neurite extension and migration for nerve development. It is associated with X-linked intellectual disability 98 and X-linked dominant inheritance, and its clinical manifestations mainly include intellectual disability, autistic behavior, poor development, dysmorphic features, gastroesophageal reflux, renal infection, and early seizures. Few cases of patients with NEXMIF variants had been reported, and to date, no deaths have been reported to our knowledge. Case Description: We present a clinical report of a female child who had a history of epilepsy, and was diagnosed with multiple organ failure (MOF), sepsis, hemophagocytic lymphohistiocytosis, severe pneumonia, and pulmonary hemorrhaging. Genetic testing identified the NEXMIF variant c.937C>T (p.R313*) in this patient. Despite aggressive treatment with anti-inflammation drugs with methylprednisolone, plasma exchange, hemodialysis and mechanical ventilation, the patient died. Conclusions: We reported the first case of the NEXMIF variant in a patient with the symptom of MOF, including acute liver failure and acute kidney injury (Grade 3). In addition, some complications, such as sepsis, hemophagocytic syndrome, pneumonia, and pulmonary hemorrhage, can also occur with this disease. All of these complications may have contributed to the patient's death. This report not only broadens the phenotype for NEXMIF variants but may also help physicians involved in the care of patients with this syndrome and enhance their understanding of this variant.

4.
Adv Healthc Mater ; 12(20): e2203132, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001492

RESUMEN

Many neurons undergo apoptosis after ischemic stroke. In the brain, neurogenesis has the potential for neuronal replacement and can be activated by external conditions to repair the injury. Crocetin (CRO), naturally extracted from the plant saffron, acts as a neuroprotective agent for ischemic stroke. However, the underlying mechanism remains unknown. In this work, the effect of CRO on neural stem cell (NSC) behaviors and subventricular zone neurogenesis is investigated. Initially, NSCs are incubated with different concentrations of CRO to detect the cell proliferation and differentiation in vitro. Second, ischemic stroke induced rats are treated with CRO using nimodipine (NMDP) as a comparison. The behavioral functions, infarcted volume, and apoptotic Nissl bodies of rats are noticeably improved after CRO-treatment, comparable to those of NMDP. In addition, the increased regional cerebral blood flow and promoted neuronal differentiation are achieved by CRO-treatment. Brain tissue examination shows significantly increased neuronal regeneration in the focal ischemic injury area. Meanwhile, the length of neurites is prolonged, indicating that CRO could potentially promote neurite extension to enhance cell-cell communication. These findings demonstrate that CRO facilitated the neuronal differentiation of NSCs by activating subventricular zone neurogenesis in damaged cortex and striatum sites to repair ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Accidente Cerebrovascular , Ratas , Animales , Neuronas/fisiología , Neurogénesis/fisiología , Accidente Cerebrovascular/terapia
5.
J Micromech Microeng ; 32(7)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35814808

RESUMEN

Among approaches aiming toward functional nervous system restoration, those implementing microfabrication techniques allow the manufacture of platforms with distinct geometry where neurons can develop and be guided to form patterned connections in vitro. The interplay between neuronal development and the microenvironment, shaped by the physical limitations, remains largely unknown. Therefore, it is crucial to have an efficient way to quantify neuronal morphological changes induced by physical or contact guidance of the microenvironment. In this study, we first devise and assess a method to prepare anisotropic, gradient poly(dimethylsiloxane) micro-ridge/groove arrays featuring variable local pattern width. We then demonstrate the ability of this single substrate to simultaneously profile the morphologcial and synaptic connectivity changes of primary cultured hippocampal neurons reacting to variable physical conditons, throughout neurodevelopment, in vitro. The gradient microtopography enhanced adhesion within microgrooves, increasing soma density with decreasing pattern width. Decreasing pattern width also reduced dendritic arborization and increased preferential axon growth. Finally, decreasing pattern geometry inhibited presynaptic puncta architecture. Collectively, a method to examine structural development and connectivity in response to physical stimuli is established, and potentially provides insight into microfabricated geometries which promote neural regeneration and repair.

6.
J Biomech ; 131: 110897, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954524

RESUMEN

Neurite extension is a dynamic process and is dependent on the microenvironment. The mechanical properties of the extracellular matrix (ECM), such as stiffness and topography influence the microenvironment and affects neurite extension; however, the mechanistic basis for this dynamic response of neurite extension remains elusive. In this study, we develop a computational model that predicts neurite extension dynamics process as the stiffness and patterned topography of ECM changes. The model includes the contribution of receptors integrin and neural cellular adhesion molecule toward the growth of neurite tip. We use non-linear finite element analysis (FEA) to model the neuronal cell, neurite, and the ECM, which is then coupled to the force-deformation receptor properties obtained from molecular dynamics simulations. Using an empirical relation, we develop a neurite extension algorithm that simulates the dynamic process of growth cone induced by growth cone extension, receptor density, and rupture. We investigate the dependence of neurite extension on ECM stiffness using three distinct materials, the effect of width and spacing of continuous (cylindrical) and discontinuous (pillar) patterned topography, as well as the topography steepness and stiffness gradient. We find that an increasing stiffness and width of patterned topography results in increased neurite extension, but the magnitude of the increase differs depending on the growth cone extension and receptor density between them. These findings will aid in vitro studies in determining an ECM with appropriate mechanical properties, such as stiffness and topography that will improve neurite extension, thus resulting in the formation of functional neurons.


Asunto(s)
Matriz Extracelular , Neuritas , Conos de Crecimiento , Integrinas , Neuronas
7.
Neural Regen Res ; 17(1): 217-227, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34100459

RESUMEN

Our previous RNA sequencing study showed that the long non-coding RNA ischemia-related factor Vof-16 (lncRNA Vof-16) was upregulated after spinal cord injury, but its precise role in spinal cord injury remains unclear. Bioinformatics predictions have indicated that lncRNA Vof-16 may participate in the pathophysiological processes of inflammation and apoptosis. PC12 cells were transfected with a pHBLV-U6-MCS-CMV-ZsGreen-PGK-PURO vector to express an lncRNA Vof-16 knockdown lentivirus and a pHLV-CMVIE-ZsGree-Puro vector to express an lncRNA Vof-16 overexpression lentivirus. The overexpression of lncRNA Vof-16 inhibited PC12 cell survival, proliferation, migration, and neurite extension, whereas lncRNA Vof-16 knockdown lentiviral vector resulted in the opposite effects in PC12 cells. Western blot assay results showed that the overexpression of lncRNA Vof-16 increased the protein expression levels of interleukin 6, tumor necrosis factor-α, and Caspase-3 and decreased Bcl-2 expression levels in PC12 cells. Furthermore, we established rat models of spinal cord injury using the complete transection at T10. Spinal cord injury model rats were injected with the lncRNA Vof-16 knockdown or overexpression lentiviral vectors immediately after injury. At 7 days after spinal cord injury, rats treated with lncRNA Vof-16 knockdown displayed increased neuronal survival and enhanced axonal extension. At 8 weeks after spinal cord injury, rats treated with the lncRNA Vof-16 knockdown lentiviral vector displayed improved neurological function in the hind limb. Notably, lncRNA Vof-16 knockdown injection increased Bcl-2 expression and decreased tumor necrosis factor-α and Caspase-3 expression in treated animals. Rats treated with the lncRNA Vof-16 overexpression lentiviral vector displayed opposite trends. These findings suggested that lncRNA Vof-16 is associated with the regulation of inflammation and apoptosis. The inhibition of lncRNA Vof-16 may be useful for promoting nerve regeneration and functional recovery after spinal cord injury. The experiments were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.

8.
Polymers (Basel) ; 15(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616422

RESUMEN

Composite biopolymer/conducting polymer scaffolds, such as polylactic acid (PLA)/ polyaniline (PAni) nanofibers, have emerged as popular alternative scaffolds in the electrical-sensitive nerve tissue engineering (TE). Although mimicking the extracellular matrix geometry, such scaffolds are highly hydrophobic and usually present an inhomogeneous morphology with massive beads that impede nerve cell-material interactions. Therefore, the present study launches an exclusive combinatorial strategy merging successive pre- and post-electrospinning plasma treatments to cope with these issues. Firstly, an atmospheric pressure plasma jet (APPJ) treatment was applied on PLA and PLA/PAni solutions prior to electrospinning, enhancing their viscosity and conductivity. These liquid property changes largely eliminated the beaded structures on the nanofibers, leading to uniform and nicely elongated fibers having average diameters between 170 and 230 nm. After electrospinning, the conceived scaffolds were subjected to a N2 dielectric barrier discharge (DBD) treatment, which significantly increased their surface wettability as illustrated by large decreases in water contact angles for values above 125° to values below 25°. X-ray photoelectron spectroscopy (XPS) analyses revealed that 3.3% of nitrogen was implanted on the nanofibers surface in the form of C-N and N-C=O functionalities upon DBD treatment. Finally, after seeding pheochromocytoma (PC-12) cells on the scaffolds, a greatly enhanced cell adhesion and a more dispersive cell distribution were detected on the DBD-treated samples. Interestingly, when the APPJ treatment was additionally performed, the extension of a high number of long neurites was spotted leading to the formation of a neuronal network between PC-12 cell clusters. In addition, the presence of conducting PAni in the scaffolds further promoted the behavior of PC-12 cells as illustrated by more than a 40% increase in the neurite density without any external electrical stimulation. As such, this work presents a new strategy combining different plasma-assisted biofabrication techniques of conducting nanofibers to create promising scaffolds for electrical-sensitive TE applications.

9.
Adv Funct Mater ; 30(40)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33343274

RESUMEN

A simple method based upon masked electrospray is reported for directly generating both unidirectional and bidirectional density gradients of biomacromolecular particles on uniaxially aligned nanofibers. The method has been successfully applied to different types of biomacromolecules, including collagen and a mixture of collagen and fibronectin or laminin, to suit different types of applications. Collagen particles in a unidirectional or bidirectional gradient are able to promote the linear migration of bone marrow stem cells or NIH-3T3 fibroblasts along the direction of increasing particle density. In the case of particles made of a mixture of collagen and fibronectin, their deposition in a bidirectional gradient promotes the migration of Schwann cells from two opposite sides toward the center, matching the scenario in peripheral nerve repair. As for a mixture of collagen and laminin, the particles in a unidirectional gradient promote the extension of neurites from embryonic chick dorsal root ganglion in the direction of increasing particle density. Taken together, the scaffolds featuring a combination of uniaxially aligned nanofibers and biomacromolecular particles in density gradient can be applied to a range of biological studies and biomedical applications.

10.
Acta Biomater ; 113: 350-359, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32663661

RESUMEN

Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 µm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite "decision-making" behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. STATEMENT OF SIGNIFICANCE: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior.


Asunto(s)
Neuritas , Poliésteres , Señales (Psicología) , Ganglios Espinales , Ingeniería de Tejidos
11.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118714, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246947

RESUMEN

Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P). CerK is highly expressed in the brain, and its association with the neuronal function has been reported. Previous reports showed that the activity of CerK is regulated by post-translational modifications including phosphorylation, whereas the cellular fate of CerK protein and its role in neuronal functions have not been clearly elucidated. Therefore, we investigated these issues in PC12 cells. Treatment with nerve growth factor (NGF) for 6 h increased the formation of C1P but not CerK mRNA. Knockdown of CerK and overexpression of HA-tagged CerK down- and up-regulated the formation of C1P, respectively. In PC12-CerK-HA cells, serum withdrawal caused ubiquitination of CerK-HA protein and down-regulated both CerK-HA protein and C1P formation within 6 h, and these down-regulations were abolished by co-treatments with NGF or proteasome inhibitors such as MG132 and clasto-lactacystin. Microscopic analysis showed that treatment with the proteasome inhibitors increased CerK-HA in puncture structures, possibly endosomes and/or vesicles, in cells. Treatment with the lysosome inhibitors reduced serum withdrawal-induced down-regulation of CerK-HA protein but not C1P formation. When knockdown or overexpression of CerK was performed, Ca2+-induced release of [3H] noradrenaline was reduced or enhanced, respectively, but neurite extension was not modified. There was a positive correlation between noradrenaline release and formation of C1P and/or CerK-HA levels in NGF- and clasto-lactacystin-treated cells. These results suggest that levels of CerK were down-regulated by the ubiquitin/proteasome and lysosome pathways and the former pathway-sensitive pool of CerK was suggested to be linked with exocytosis in PC12 cells.


Asunto(s)
Exocitosis/genética , Factor de Crecimiento Nervioso/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Ciclo Celular , Proliferación Celular , Ceramidas , Lisosomas/genética , Lisosomas/metabolismo , Redes y Vías Metabólicas/genética , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosforilación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas
12.
J Biomed Mater Res A ; 108(8): 1713-1725, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196902

RESUMEN

The extracellular matrix provides cells with a support structure and an attachment site in actual substrate. Its biochemical and surface properties play an important role in and have significant impact on cell attachment, proliferation, migration, differentiation, and gene expression. Leveraging the hydrophilicity and neuroprotective of gastrodin, a gastrodin/polyurethane (PU) elastomer was developed utilizing in situ polymerization and salt-leaching methods. The results showed that gastrodin/PU film had a good flexibility and supporting strength, as well as hydrophilicity. Thus film possessed highly surface area, interconnected porous structure with a pore size (10~60 µm) for cell attachment, and could provide surface cues to augment neurite extension. For PC12 cells cultured within the films, especially the 5gastrodin/PU group, presented a progressive increase with time, coupled with the upregulation of brain-derived neurotrophic factor and glial cell derived neurotrophic factor expression. This is the first report on the construction of a gastrodin/PU porous film, and the results reveal its promise as a scaffold material for neural tissue engineering.


Asunto(s)
Alcoholes Bencílicos/farmacología , Materiales Biocompatibles/farmacología , Glucósidos/farmacología , Regeneración Nerviosa/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Alcoholes Bencílicos/química , Materiales Biocompatibles/química , Elastómeros/química , Elastómeros/farmacología , Glucósidos/química , Fármacos Neuroprotectores/química , Células PC12 , Poliuretanos/química , Poliuretanos/farmacología , Porosidad , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
13.
ACS Appl Bio Mater ; 3(4): 2160-2169, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35025267

RESUMEN

Fabrication of a surface-engineered electrospun scaffold having biomimetic properties like the extracellular matrix (ECM) is essential for neural tissue engineering. An electroconductive and elastomeric scaffold with aligned fibers acting as a substrate may have a great impact on the directional outgrowth of neurites. In this study, we have electrospun electrically conductive, polyurethane-based elastomeric and topographically aligned fibro-porous neural scaffolds. Adhesive proteins of the ECM are documented to have an important role in controlling neuronal cell behavior, including cell adhesion, proliferation, and neurite outgrowth. These bio-adhesion proteins or nanomaterials mimicking their action, if used for surface modification of neural scaffolds, may have the potential to accelerate the nerve repair process. Thus, electrospun scaffolds fabricated were surface-engineered using a unique and modified single-step electrospraying technique to coat the scaffold surface with an exploratory bio-adhesion agent, a thin layer of graphene oxide (GO) films. The study was then carried out to determine if the GO-coated electrospun electroconductive polycarbonate urethane (PCU) substrate can improve the bio-interface attributes of these scaffolds or may alter the neurite outgrowth of PC-12 cells like any other bio-adhesion proteins. Therefore, the hybrid scaffolds with GO coatings were compared with similar scaffolds coated with poly-l-lysine (PLL) for neural cell adhesion, proliferation, and neurite extension. Neurite outgrowth studies showed that although the average neurite length was comparable on both GO- and PLL-coated surfaces, the length profile of neurites, when categorized based on length, showed an increased number of lengthier neurites on the GO-coated hybrid scaffolds. In particular, the study brings out an innovative surface engineering technique for the coating of GO on polymeric scaffolds. It may be further put together in designing of hybrid surfaces with nanotopographical biophysical cues on three-dimensional neural scaffolds, which in turn may stimulate an accelerated neuronal regeneration via providing an enhanced ECM like milieu.

14.
Adv Funct Mater ; 30(17)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33692658

RESUMEN

Designing biomimetic scaffolds with in vivo-like microenvironments using biomaterials is an essential component of successful tissue engineering approaches. The intestinal smooth muscle layers exhibit a complex tubular structure consisting of two concentric muscle layers in which the inner circular layer is orthogonally oriented to the outer longitudinal layer. Here, we present a three-dimensional (3D) bi-layered tubular scaffold based on flexible, mechanically robust and well aligned silk protein microfibers to mimic native human intestinal smooth muscle structure. The scaffolds were seeded with primary human intestinal smooth muscle cells to replicate human intestinal muscle tissues in vitro. Characterization of the tissue constructs revealed good biocompatibility and support for cell alignment and elongation in the different scaffold layers to enhance cell differentiation and functions. Furthermore, the engineered smooth muscle constructs supported oriented neurite outgrowth, a requisite step to achieve functional innervation. These results suggested these microfiber scaffolds as functional templates for in vitro regeneration of human intestinal smooth muscle systems. The scaffolding provides a crucial step toward engineering functional human intestinal tissue in vitro, as well as for the engineering of many other types of smooth muscles in terms of their similar phenotypes. Such utility may lead to a better understanding of smooth muscle associated diseases and treatments.

15.
ACS Appl Mater Interfaces ; 12(2): 2067-2075, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31859479

RESUMEN

In the current study, we examined the potential for neural stem cell (NSCs) proliferation on novel aligned touch-spun polycaprolactone (PCL) nanofibers. Electrospun PCL nanofibers with similar diameter and alignment were used as a control. Confocal microscopy images showed that NSCs grew and differentiated all over the scaffolds up to 8 days. Neurite quantification analysis revealed that the NSCs cultured on the touch-spun fibers with incorporated bovine serum albumin promoted the expression of neuron-specific class III ß-tubulin after 8 days. More importantly, NSCs grown on the aligned touch-spun PCL fibers exhibited a bipolar elongation along the direction of the fiber, while NSCs cultured on the aligned electrospun PCL fibers expressed a multipolar elongation. The structural characteristics of the PCL nanofibers analyzed by X-ray diffraction indicated that the degree of crystallinity and elastic modulus of the touch-spun fiber are significantly higher than those of electrospun fibers. These findings indicate that the aligned and stiff touch-spun nanofibrous scaffolds show considerable potential for nerve injury repair.


Asunto(s)
Nanofibras/química , Regeneración Nerviosa/fisiología , Tacto , Animales , Materiales Biocompatibles/química , Diferenciación Celular , Humanos , Nanofibras/ultraestructura , Células-Madre Neurales/citología , Poliésteres/química , Propiedades de Superficie
16.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G53-G65, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682159

RESUMEN

Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.


Asunto(s)
Mucosa Intestinal/inervación , Intestino Delgado/inervación , Microvellosidades/fisiología , Plexo Mientérico/crecimiento & desarrollo , Neuritas/fisiología , Neurogénesis , Animales , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/fisiología , Potenciales Evocados , Femenino , Edad Gestacional , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Serotonina/farmacología , Tubulina (Proteína)/metabolismo
17.
Front Neurosci ; 13: 983, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31607843

RESUMEN

Culture of adult neurons of the central nervous system (CNS) can provide a unique model system to explore neurodegenerative diseases. The CNS includes neurons and glia of the brain, spinal cord and retina. Neurons in the retina have the advantage of being the most accessible cells of the CNS, and can serve as a reliable mirror to the brain. Typically, primary cultures utilize fetal rodent neurons, but very rarely adult neurons from larger mammals. Here, we cultured primary retinal neurons isolated from adult goat up to 10 days, and established an in vitro model of hyperglycemia for performing morphological and molecular characterization studies. Immunofluorescence staining revealed that approximately 30-40% of cultured cells expressed neuronal markers. Next, we examined the relative expression of cell adhesion molecules (CAMs) in adult goat brain and retina. We also studied the effect of different glucose concentrations and media composition on the growth and expression of CAMs in cultured retinal neurons. Hyperglycemia significantly enhances neurite outgrowth in adult retinal neurons in culture. Expression of CAMs such as Caspr1, Contactin1 and Prion is downregulated in the presence of high glucose. Hyperglycemia downregulates the expression of the transcription factor CCAAT/enhancer binding protein (C/EBP α), predicted to bind CAM gene promoters. Collectively, our study demonstrates that metabolic environment markedly affects transcriptional regulation of CAMs in adult retinal neurons in culture. The effect of hyperglycemia on CAM interactions, as well as related changes in intracellular signaling pathways in adult retinal neurons warrants further investigation.

18.
Mater Sci Eng C Mater Biol Appl ; 103: 109865, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31349419

RESUMEN

Iridium (Ir) thin film was deposited on patterned titanium substrate by direct-current (DC) magnetron sputtering, and then activated in sulfuric acid (H2SO4) through repetitive potential sweeps to form iridium oxide (IrOx) as neural electrode interface. The resultant IrOx film showed a porous and open morphology with aligned microstructure, exhibited superior electrochemical performance and excellent stability. The IrOx film supported neural stem cells (NSCs) attachment, proliferation and improved processes without causing toxicity. The patterned IrOx films offered a unique system to investigate the synergistic effects of topographical cue and electrical stimulation on neurite outgrowth. Electrical stimulation, when applied through patterned IrOx films, was found to further increase the neurite extension of neuron-like cells and significantly reorient the neurite alignment towards to the direction of stimulation. These results indicate that IrOx film, as electrode-tissue interface is highly stable and biocompatible with excellent electrochemical properties.


Asunto(s)
Estimulación Eléctrica , Iridio/química , Ensayo de Materiales , Membranas Artificiales , Células-Madre Neurales/metabolismo , Proyección Neuronal , Animales , Electrodos , Células-Madre Neurales/citología , Células PC12 , Ratas
19.
Colloids Surf B Biointerfaces ; 178: 32-37, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825776

RESUMEN

We report about the response of N2a cells, a mouse neuroblastoma cell line, cultured on inert substrates with controlled porous nanostructure. The substrate surfaces were obtained by anodization and post-fabrication etching of thin aluminum films previously deposited onto glass. The morphology of the adherent cells was assessed by scanning electron microscopy. After fluorescent labelling, confocal microscopy was used to assess both the cell density, by cell nuclei counting, and their growth, by characterizing the neurite extensions in both number and length. By comparing with flat and smooth aluminum oxide, we can conclude that the nanoporous morphology of the anodized aluminum is favorable for cell development, which is probably correlated with the high density of regions with high local curvature. The intermediate pore size in the given range seems unfavorable for the number of cells, while the cell shape and the number of extensions point to a dominating differentiation of the N2a cells in correspondence with a characteristic pore size of 60 nm. These results are promising in view of the application of anodic alumina as a platform for the development of neuronal bioassays based on cell interconnectivity.


Asunto(s)
Óxido de Aluminio/química , Nanoporos , Neuronas/citología , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Ratones , Microscopía Confocal , Microscopía Fluorescente , Neuritas/metabolismo
20.
Front Neurosci ; 12: 821, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483047

RESUMEN

Heat shock proteins (Hsps) are a large family of molecular chaperones that are well-known for their roles in protein maturation, re-folding and degradation. While some Hsps are constitutively expressed in certain regions, others are rapidly upregulated in the presence of stressful stimuli. Numerous stressors, including hyperthermia and hypoxia, can induce the expression of Hsps, which, in turn, interact with client proteins and co-chaperones to regulate cell growth and survival. Such interactions must be tightly regulated, especially at critical points during embryonic and postnatal development. Hsps exhibit specific patterns of expression consistent with a spatio-temporally regulated role in neurodevelopment. There is also growing evidence that Hsps may promote or inhibit neurodevelopment through specific pathways regulating cell differentiation, neurite outgrowth, cell migration, or angiogenesis. This review will examine the regulatory role that these individual chaperones may play in neurodevelopment, and will focus specifically on the signaling pathways involved in the maturation of neuronal and glial cells as well as the underlying vascular network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA