Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(24): 27743-27761, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35695238

RESUMEN

High level of detrimental factors including reactive oxygen species (ROS) and inflammatory cytokines accumulated in the infarct core and their erosion to salvageable penumbra are key pathological cascades of ischemia-reperfusion injury in stroke. Few neuroprotectants can remodel the hostile microenvironment of the infarct core for the failure to interfere with dead or biofunctionally inactive dying cells. Even ischemia-reperfusion injury is temporarily attenuated in the penumbra by medications; insults of detrimental factors from the core still erode the penumbra continuously along with drug metabolism and clearance. Herein, a strategy named "nanobuffer" is proposed to neutralize detrimental factors and buffer destructive erosion to the penumbra. Inspired by neutrophils' tropism to the infarct core and affinity to inflammatory cytokines, poly(lactic-co-glycolic acid) (PLGA) nanoparticles are coated with neutrophil membrane to target the infarct core and absorb inflammatory cytokines; α-lipoic acid is decorated on the surface and cannabidiol is loaded for ROS scavenging and neuroprotection, respectively, to construct the basic unit of the nanobuffer. Such a nanobuffer exerts a comprehensive effect on the infarct area via detrimental factor neutralization and cannabidiol-induced neuroprotection. Besides, the nanobuffer can possibly be enhanced by dynamic ROP (ring-opening-polymerization)-induced membrane cross-fusion among closely adjacent units in vivo. Systematic evaluations show significant decrease of detrimental factors in the core and the penumbra, reduced infarct volume, and improved neurological recovery compared to the untreated group of stroke rats.


Asunto(s)
Isquemia Encefálica , Cannabidiol , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Biomimética , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Cannabidiol/uso terapéutico , Citocinas , Infarto , Neuronas/metabolismo , Neutrófilos/metabolismo , Ratas , Especies Reactivas de Oxígeno , Accidente Cerebrovascular/tratamiento farmacológico
2.
J Nanobiotechnology ; 20(1): 218, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525963

RESUMEN

Acute myocardial infarction (MI) induces a sterile inflammatory response that may result in poor cardiac remodeling and dysfunction. Despite the progress in anti-cytokine biologics, anti-inflammation therapy of MI remains unsatisfactory, due largely to the lack of targeting and the complexity of cytokine interactions. Based on the nature of inflammatory chemotaxis and the cytokine-binding properties of neutrophils, we fabricated biomimetic nanoparticles for targeted and broad-spectrum anti-inflammation therapy of MI. By fusing neutrophil membranes with conventional liposomes, we fabricated biomimetic liposomes (Neu-LPs) that inherited the surface antigens of the source cells, making them ideal decoys of neutrophil-targeted biological molecules. Based on their abundant chemokine and cytokine membrane receptors, Neu-LPs targeted infarcted hearts, neutralized proinflammatory cytokines, and thus suppressed intense inflammation and regulated the immune microenvironment. Consequently, Neu-LPs showed significant therapeutic efficacy by providing cardiac protection and promoting angiogenesis in a mouse model of myocardial ischemia-reperfusion. Therefore, Neu-LPs have high clinical translation potential and could be developed as an anti-inflammatory agent to remove broad-spectrum inflammatory cytokines during MI and other neutrophil-involved diseases.


Asunto(s)
Citocinas , Neutrófilos , Animales , Antiinflamatorios , Biomimética , Modelos Animales de Enfermedad , Lipopolisacáridos , Liposomas , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA