Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(28): 12708-12718, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953681

RESUMEN

Electroreduction of nitrate (NO3RR) to ammonia in membraneless electrolyzers is of great significance for reducing the cost and saving energy consumption. However, severe chemical crossover with side reactions makes it challenging to achieve ideal electrolysis. Herein, we propose a general strategy for efficient membraneless ammonia synthesis by screening NO3RR catalysts with inferior oxygen reduction activity and matching the counter electrode (CE) with good oxygen evolution activity while blocking anodic ammonia oxidation. Consequently, screening the available Co-Co system, the membraneless NO3--to-NH3 conversion performance was significantly higher than H-type cells using costly proton-exchange membranes. At 200 mA cm-2, the full-cell voltage of the membraneless system (∼2.5 V) is 4 V lower than that of the membrane system (∼6.5 V), and the savings are 61.4 kW h (or 56.9%) per 1 kg NH3 produced. A well-designed pulse process, inducing reversible surface reconstruction that in situ generates and restores the active Co(III) species at the working electrode and forms favorable Co3O4/CoOOH at the CE, further significantly improves NO3--to-NH3 conversion and blocks side reactions. A maximum NH3 yield rate of 1500.9 µmol cm-2 h-1 was achieved at -0.9 V (Faraday efficiency 92.6%). This pulse-coupled membraneless strategy provides new insights into design complex electrochemical synthesis.


Asunto(s)
Amoníaco , Nitratos , Amoníaco/química , Electrodos , Oxidación-Reducción , Técnicas Electroquímicas , Electrólisis , Catálisis
2.
Nano Lett ; 24(9): 2812-2820, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396345

RESUMEN

Electroreduction of waste nitrate to valuable ammonia offers a green solution for environmental restoration and energy storage. However, the electrochemical self-reconstruction of catalysts remains a huge challenge in terms of maintaining their stability, achieving the desired active sites, and managing metal leaching. Herein, we present an electrical pulse-driven Co surface reconstruction-coupled Coδ+ shuttle strategy for the precise in situ regulation of the Co(II)/Co(III) redox cycle on the Co-based working electrode and guiding the dissolution and redeposition of Co-based particles on the counter electrode. As result, the ammonia synthesis performance and stability are significantly promoted while cathodic hydrogen evolution and anodic ammonia oxidation in a membrane-free configuration are effectively blocked. A high rate of ammonia production of 1.4 ± 0.03 mmol cm-2 h-1 is achieved at -0.8 V in a pulsed system, and the corresponding nitrate-to-ammonia Faraday efficiency is 91.7 ± 1.0%. This work holds promise for the regulation of catalyst reactivity and selectivity by engineering in situ controllable structural and chemical transformations.

3.
ACS Nano ; 17(7): 6687-6697, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36930780

RESUMEN

The electrochemical synthesis of ammonia is highly dependent on the coupling reaction between nitrate and water, for which an electrocatalyst with a multifunctional interface is anticipated to promote the deoxygenation and hydrogenation of nitrate with water. Herein, by engineering the surface of bimetallic Ni/Co-MOFs (NiCoBDC) with hydrogen-substituted graphdiyne (HsGDY), a hybrid nanoarray of NiCoBDC@HsGDY with a multifunctional interface has been achieved toward scale-up of the nitrate-to-ammonia conversion. On the one hand, a partial electron transfers from Ni2+ to the coordinatively unsaturated Co2+ on the surface of NiCoBDC, which not only promotes the deoxygenation of *NO3 on Co2+ but also activates the water-dissociation to *H on Ni2+. On the other hand, the conformal coated HsGDY facilitates both electrons and NO3- ions gathering on the interface between NiCoBDC and HsGDY, which moves forward the rate-determining step from the deoxygenation of *NO3 to the hydrogenation of *N with both *H on Ni2+ and *H2O on Co2+. As a result, such a NiCoBDC@HsGDY nanoarray delivers high NH3 yield rates with Faradaic efficiency above 90% over both wide potential and pH windows. When assembled into a galvanic Zn-NO3- battery, a power density of 3.66 mW cm-2 is achieved, suggesting its potential in the area of aqueous Zn-based batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA