Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Mar Environ Res ; 202: 106739, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255630

RESUMEN

Octocorals are showing resilience to local and global stressors, while the decline in zooxanthellate corals continues. One of the processes that helps explain this ecological succession is the vertical growth of octocorals, which allows colonies to avoid stressors occurring at the substrate level. However, the growth and survival of octocorals could be affected by eutrophication, similar to what has happened with zooxanthellate corals. For this reason, the growth rate, mortality and survival of two octocoral species were determined along a eutrophication gradient in Cuba. A permanent band transect (250 × 2 m) was established on seven frontal reefs, and marked colonies were monitored for one year. The growth rates in height, width and colony area of Eunicea flexuosa and Plexaura kükenthali were significantly greater in the reefs near the polluted river basins. The eutrophication gradient, water visibility, and sediment accumulation on the bottom explained 36-78% of the variability in the growth of both species. The positive and significant correlations between the growth rate and stable nitrogen isotopes in both species and the microbiological variables, suggest that the contributions of dissolved inorganic nitrogen and organic matter from sewage discharge favor the growth of colonies. The eutrophication gradient did not explain the variability in mortality of either species in the short term, while hydrodynamic stress did. The results of this research highlight the resilience of both species and their ability to grow more rapidly in areas with eutrophic conditions, low water visibility, and greater sediment accumulation on the bottom, which may help explain the abundance of octocorals in the western tropical Atlantic.

2.
Mar Pollut Bull ; 207: 116828, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241373

RESUMEN

Macroalgal nitrogen isotope analysis (δ15N) is a reliable method for the identification of nitrogen pollutant sources. Understanding δ15N geospatial variation within small bays and/or harbour environments can help identify point sources of nitrogen pollution. This study sampled over 300 Fucus vesiculosus and Ulva sp. specimens in September 2022 and May 2023 from Staithes Harbour, North Yorkshire, England. δ15N values for Staithes Beck were elevated when compared to sites in Staithes Harbour and the North Sea: this is attributed to sewage effluent and/or agricultural manure. Few sites within Staithes Harbour were significantly different from one another in terms of δ15N, suggesting a relatively homogenous nitrogen isotope record of the harbour. Simple harbour environments like Staithes may be relatively well mixed, and thus, sampling one harbour site may be enough to represent the entire harbour. Of course, more complex harbours may require more sample locations to ascertain point sources and mixing in the harbour.


Asunto(s)
Monitoreo del Ambiente , Isótopos de Nitrógeno , Algas Marinas , Algas Marinas/química , Isótopos de Nitrógeno/análisis , Fucus , Inglaterra , Contaminantes Químicos del Agua/análisis , Ulva , Mar del Norte , Explotaciones Pesqueras
3.
Sci Total Environ ; 951: 175824, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197756

RESUMEN

Oyster farming activities play a pivotal role in the biogeochemical cycles of coastal marine ecosystems, particularly in terms of sedimentary carbon cycling. To gain deep insights into the influence of expanding oyster culture on the sedimentary carbon cycle, surface sediments were collected from the Maowei Sea, which is the largest oyster farming bay in south China, based on six filed surveys between July 2010 and December 2022. The sediment samples were analyzed for total organic carbon (TOC), total nitrogen (TN), stable carbon and nitrogen isotopes (δ13C and δ15N) to evaluate the inter-annual variations in the source contribution to sedimentary organic matter (SOM). The results revealed that the average contents of sedimentary TOC and TN were 0.67 ± 0.41 % and 0.06 ± 0.03 %, respectively. Fluctuations in the C/N molar ratios ranged from 5.8 to 23.6, with an average of 12.6 ± 2.9, indicating a significant terrestrial input contribution to SOM in the study area. Furthermore, the integration of stable isotope analysis and Bayesian mixing model demonstrated a gradual increase in the mean proportion of shellfish biodeposition to SOM, from 12.0 ± 5.6 % in July 2010 to 21.1 ± 7.3 % in December 2022, consistent with the progressive expansion of oyster aquaculture along this coastal area, thereby emphasizing the substantial influence of oyster farming on SOM composition. With the anticipated expansion of oyster farming scale and production in the future, shellfish biodeposition is expected to assume a more important role in shaping SOM dynamics and sedimentary organic carbon cycling in coastal waters. Overall, this study provided an important perspective for better assessing the impact of expanding mariculture scale on coastal biogeochemical cycles, thereby making valuable contributions to future policy formulation concerning mariculture and ecological conservation.


Asunto(s)
Acuicultura , Bahías , Monitoreo del Ambiente , Sedimentos Geológicos , Ostreidae , Sedimentos Geológicos/química , Animales , China , Carbono/análisis , Nitrógeno/análisis , Isótopos de Carbono/análisis , Ciclo del Carbono
4.
Proc Natl Acad Sci U S A ; 121(32): e2322863121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074276

RESUMEN

The nitrogen isotopes of the organic matter preserved in fossil fish otoliths (ear stones) are a promising tool for reconstructing past environmental changes. We analyzed the 15N/14N ratio (δ15N) of fossil otolith-bound organic matter in Late Cretaceous fish otoliths (of Eutawichthys maastrichtiensis, Eutawichthys zideki and Pterothrissus sp.) from three deposits along the US east coast, with two of Campanian (83.6 to 77.9 Ma) and one Maastrichtian (72.1 to 66 Ma) age. δ15N and N content were insensitive to cleaning protocol and the preservation state of otolith morphological features, and N content differences among taxa were consistent across deposits, pointing to a fossil-native origin for the organic matter. All three species showed an increase in otolith-bound organic matter δ15N of ~4‰ from Campanian to Maastrichtian. As to its cause, the similar change in distinct genera argues against changing trophic level, and modern field data argue against the different locations of the sedimentary deposits. Rather, the lower δ15N in the Campanian is best interpreted as an environmental signal at the regional scale or greater, and it may be a consequence of the warmer global climate. A similar decrease has been observed in foraminifera-bound δ15N during warm periods of the Cenozoic, reflecting decreased water column denitrification and thus contraction of the ocean's oxygen deficient zones (ODZs) under warm conditions. The same δ15N-climate correlation in Cretaceous otoliths raises the prospect of an ODZ-to-climate relationship that has been consistent over the last ~80 My, applying before and after the end-Cretaceous mass extinction and spanning changes in continental configuration.


Asunto(s)
Peces , Fósiles , Isótopos de Nitrógeno , Membrana Otolítica , Animales , Membrana Otolítica/química , Membrana Otolítica/anatomía & histología , Isótopos de Nitrógeno/análisis , Peces/metabolismo , Peces/anatomía & histología
5.
Plants (Basel) ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931060

RESUMEN

The nitrogen-stable isotopes of plants can be used to verify the source of fertilizers, but the fertilizer uptake patterns in tea (Camellia sinensis) plants are unclear. In this study, potted tea plants were treated with three types of organic fertilizers (OFs), urea, and a control. The tea leaves were sampled over seven months from the top, middle, and base of the plants and analyzed for the δ15N and nitrogen content, along with the corresponding soil samples. The top tea leaves treated with the rapeseed cake OF had the highest δ15N values (up to 6.6‱), followed by the chicken manure, the cow manure, the control, and the urea fertilizer (6.5‱, 4.1‱, 2.2‱, and 0.6‱, respectively). The soil treated with cow manure had the highest δ15N values (6.0‱), followed by the chicken manure, rapeseed cake, control, and urea fertilizer (4.8‱, 4.0‱, 2.5‱, and 1.9‱, respectively). The tea leaves fertilized with rapeseed cake showed only slight δ15N value changes in autumn but increased significantly in early spring and then decreased in late spring, consistent with the delivery of a slow-release fertilizer. Meanwhile, the δ15N values of the top, middle, and basal leaves from the tea plants treated with the rapeseed cake treatment were consistently higher in early spring and lower in autumn and late spring, respectively. The urea and control samples had lower tea leaf δ15N values than the rapeseed cake-treated tea and showed a generalized decrease in the tea leaf δ15N values over time. The results clarify the temporal nitrogen patterns and isotope compositions of tea leaves treated with different fertilizer types and ensure that the δ15N tea leaf values can be used to authenticate the organic fertilizer methods across different harvest periods and leaf locations. The present results based on a pot experiment require further exploration in open agricultural soils in terms of the various potential fertilizer effects on the different variations of nitrogen isotope ratios in tea plants.

6.
Chemosphere ; 359: 142394, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777199

RESUMEN

Scleractinian corals are the main framework-building groups in tropical coral reefs. In the coral holobiont, nitrogen-cycling mediated by microbes is fundamental for sustaining the coral reef ecosystems. However, little direct evidence characterizing the activities of microbial nitrogen removal via complete denitrification and anaerobic ammonium oxidation (anammox) in stony corals has been presented. In this study, multiple incubation experiments using 15N-tracer were conducted to identify and characterize N2 production by denitrification and anammox in the stony coral Pocillopora damicornis. The rates of denitrification and anammox were recorded up to 0.765 ± 0.162 and 0.078 ± 0.009 nmol N2 cm-2 h-1 respectively. Denitrification contributed the majority (∼90%) of N2 production by microbial nitrogen removal in stony corals. The microbial nitrogen removal activities showed diel rhythms, which might correspond to photosynthetic oxygen production. The N2 production rates of anammox and denitrification increased with incubation time. To the authors' knowledge, this study is the first to confirm and characterize the activities of complete denitrification and anammox in stony corals via stable isotope techniques. This study extends the understanding on nitrogen-cycling in coral reefs and how it participates in corals' resilience to environmental stressors.


Asunto(s)
Compuestos de Amonio , Antozoos , Arrecifes de Coral , Desnitrificación , Nitrógeno , Antozoos/metabolismo , Animales , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Oxidación-Reducción , Luz , Ciclo del Nitrógeno , Anaerobiosis , Bacterias/metabolismo , Ecosistema
7.
Mar Environ Res ; 197: 106480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564848

RESUMEN

Impacts of river discharge on coastal ocean processes are multi-dimensional. Studies on sinking particle fluxes, composition and their seasonal variability in coastal oceans are very limited. In this study, we investigated the impact of river discharge on seasonal variability in sinking fluxes of total mass, biogenic and lithogenic material in a river-dominated continental margin, western coastal Bay of Bengal. Higher POC, lithogenic and total mass fluxes were found during early southwest monsoon, and are decoupled with peak river discharge and elevated primary production. It is attributed to cross-shelf transport of re-suspended surface sediments from shelf region. Peak river discharge followed by elevated chlorophyll-a suggest nutrients supply though river discharge support primary production. Elemental C:N ratios, δ13C and δ15N results likely suggest that both marine and terrestrial sources contributed to sinking POM, . Overall, higher sinking fluxes during southwest monsoon than rest of the year suggest that seasonal river discharge exerts considerable impact on sinking fluxes in the western coastal Bay of Bengal.


Asunto(s)
Bahías , Material Particulado , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Ríos , Carbono/análisis
8.
Sci Total Environ ; 925: 171776, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499107

RESUMEN

The biogeochemical cycles of iron and organic carbon (OC) are closely interconnected in terrestrial and aquatic systems. In ocean waters, the concentration of reactive Fe is tightly controlled by soluble organic ligands. In soils, Fe stabilizes OC by forming aggregates that shield OC from degradation. In lake sediments however, the role of Fe in the preservation of OC has not been explored as extensively yet. We investigated Fe-OC interactions in sediment collected from Lake Tantaré, in which two basins are characterized by contrasting redox conditions. These contrasting redox conditions provide an opportunity to assess their importance in the formation of stable Fe-OC complexes. On average, 30.1 ± 6.4 % of total OC was liberated upon reductively dissolving reactive iron. The Fe-associated and the non-Fe-associated OC pools were characterized at the elemental (OC, TN), isotopic (δ13C, δ15N) and functional group (FTIR) levels. Large differences in OC:Fe and TN:Fe ratios between the two basins were found which were not linked to OM chemical composition but rather to differences in reactive iron concentrations stemming from the higher abundance of iron sulfides in the anoxic basin. Nevertheless, since the affinity of OM for iron sulfides is lower than that for iron hydroxides, using OC:Fe and TN:Fe ratios as a diagnostic tool for the type of OM-Fe interactions should be done with care in anoxic environment. Same caution should be considered for oxic sediments due to the variation of the proportion of iron hydroxides associated with OM from sample to sample.

9.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417516

RESUMEN

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Compuestos de Amonio/análisis , Isótopos de Nitrógeno/análisis , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles y Gotitas Respiratorias , Amoníaco/análisis , Material Particulado/análisis , China
10.
Sci Total Environ ; 921: 170715, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331296

RESUMEN

Understanding the sources and formation mechanisms of nitrate in PM2.5 is important for effective and precise prevention and control of particulate matter pollution. In this study, we detected stable nitrogen and oxygen isotope signatures of NO- 3 (expressed as δ15N-NO- 3 and δ18O-NO3-) in PM2.5 samples in Wuhan, the largest city in central China. The sources and formation pathways of NO3- were quantitatively analyzed using the modified version of the Bayesian isotope mixing (MixSIR) model, and the regional transport characteristics of NO3- were analyzed using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model and concentration-weighted trajectory (CWT) method. The results showed that NO3- significantly contributed to the ambient PM2.5 pollution and its driving effect increased with the gradient of pollution level. The average δ15N-NO3- and δ18O-NO3- values were 4.7 ± 0.9 ‰ and 79.7 ± 2.9 ‰, respectively. δ15N-NO3- and δ18O-NO3- were more enriched in winter and increased dramatically in heavily polluted days. The reaction pathway of NO2 + OH dominated nitrate formation in summer, while the reaction pathway of N2O5+ H2O dominated in other seasons and contributed more in polluted days than clean days. The contributions of vehicle emission, coal combustion, biomass burning, biogenic soil emission, and ship emission sources to NO3- were 26.4 %, 23.4 %, 22.8 %, 15.3 %, and 12.1 %, respectively. In addition to local emissions, air mass transport from the northern China had a significant impact on particulate NO3- in Wuhan. Overall, we should pay special attention to vehicle and ship emissions and winter coal combustion emissions in future policymaking.

11.
Geobiology ; 22(1): e12585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385603

RESUMEN

The nitrogen isotopic composition (15 N/14 N ratio, or δ15 N) of enameloid-bound organic matter (δ15 NEB ) in shark teeth was recently developed to investigate the biogeochemistry and trophic structures (i.e., food webs) of the ancient ocean. Using δ15 NEB , we present the first nitrogen isotopic evidence for trophic differences between shark taxa from a single fossil locality. We analyze the teeth of four taxa (Meristodonoides, Ptychodus, Scapanorhynchus, and Squalicorax) from the Late Cretaceous (83-84 Ma) Trussells Creek site in Alabama, USA, and compare the N isotopic findings with predictions from tooth morphology, the traditional method for inferring shark paleo-diets. Our δ15 NEB data indicate two distinct trophic groups, with averages separated by 6.1 ± 2.1‰. The lower group consists of Meristodonoides and Ptychodus, and the higher group consists of Scapanorhynchus and Squalicorax (i.e., lamniforms). This δ15 NEB difference indicates a 1.5 ± 0.5 trophic-level separation between the two groups, a finding that is in line with paleontological predictions of a higher trophic level for these lamniforms over Meristodonoides and Ptychodus. However, the δ15 NEB of Meristodonoides is lower than suggested by tooth morphology, although consistent with mechanical tests suggesting that higher trophic-level bony fishes were not a major component of their diet. Further, δ15 NEB indicates that the two sampled lamniform taxa fed at similar trophic levels despite their different inferred tooth functions. These two findings suggest that tooth morphology alone may not always be a sufficient indicator of dietary niche. The large trophic separation revealed by the δ15 NEB offset leaves open the possibility that higher trophic-level lamniforms, such as those measured here, preyed upon smaller, lower trophic-level sharks like Meristodonoides.


Asunto(s)
Tiburones , Animales , Isótopos de Carbono/análisis , Tiburones/anatomía & histología , Golfo de México , Cadena Alimentaria , Isótopos de Nitrógeno/análisis
12.
Eur J Nutr ; 63(2): 409-423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38006443

RESUMEN

PURPOSE: Diet-related diseases are advancing as the leading cause of death globally. As self-reporting of diet by patients can be associated with errors, stable isotopes of human tissues can be used to diagnose diseases, understand physiology, and detect change in diet. This study investigates the effect of type and amount of food on the nitrogen and carbon concentration (Nconc and Cconc) and isotopic composition (δ15N and δ13C) in human scalp hair and fingernails. METHODS: A total of 100 residents participated in the study whereas only 74 individuals provided complete diet history. Sixty-six food items majorly available to them were also collected. The Nconc, Cconc, δ15N and δ13C values of human hair, nails and food items were determined. RESULTS: The Nconc, Cconc, δ15N and δ13C values between plant-sourced and animal-sourced food items, as well as human hair and nail tissue were significantly different (p < 0.05). The δ15N value of human tissues was distinct between lacto-vegetarians and omnivores by 0.9‰. The δ15N and δ13C values of human tissues increased by 0.4-0.5‰ with every 5% increase in the consumption of animal protein. CONCLUSIONS: The study helps to demarcate lacto-vegetarians from omnivores, and estimate the percentage of animal protein in diet based on the dual isotope values of human tissues. It also acts as a reference to determine isotopic composition of hair tissue provided the isotope value of nail tissue is known and vice versa.


Asunto(s)
Uñas , Cuero Cabelludo , Animales , Humanos , Cuero Cabelludo/química , Uñas/química , Isótopos de Nitrógeno/análisis , Isótopos de Carbono/análisis , Dieta , Cabello/química , Alimentación Animal/análisis
13.
Environ Res ; 244: 117924, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101722

RESUMEN

Marine transitional environments play an important role in human sustainability. Around these ecosystems, coastal lagoons are subject to high anthropogenic pressure from population growth. The increased demand for goods and services is associated with the elevated discharge of untreated and treated wastewater into lagoon systems. The absence of benthic organisms in lagoon environments has been linked to extreme natural conditions and severe anthropogenic impact at both spatial and temporal scales. However, the mechanisms that lead to the presence of azoic sediments in lagoon environments have yet to be studied. This study aimed to determine the vertical variability of textural groups, geochemistry, and benthic foraminiferal fauna to understand how natural and anthropogenic components generate a vertical sediment sequence with low or absent benthic foraminifera in a subtropical coastal lagoon in the southwestern end of the Gulf of California. A 41 cm-long sediment core was collected from La Paz Lagoon at a 1-m depth. The core was sectioned every centimeter, and sediment subsamples were dried and homogenized for grain size, calcium carbonate, elemental and isotopic carbon and nitrogen analyses, and benthic foraminifera quantification. Muds with fine sands towards the core's base characterized the sedimentary sequence. Organic carbon and total nitrogen increased from the base (1.4% and 0.06%, respectively) to the core-top (CT, 3.0% and 0.14%, respectively), significant from the 27 cm interval. Calcium carbonate content was very low (<0.8%). The relationship of δ13C vs. C:N ratio indicated that sedimentary organic carbon was derived from the marine and sewage source mixture. The δ15N of organic matter increased by 3.7‰, starting from the 27 cm interval towards the CT. The nitrogen sewage input source was relatively more significant than nitrogen fixation. The few individuals (<18 ind. in 10 g) and genera (Ammonia and Elphidium), as well as the absence of foraminifera in 19 of 41 intervals in the core, indicated that environmental conditions were unfavorable, even for colonization of environmentally stress-tolerant genera. The frequency of azoic sediments was higher from the 25 cm interval to the CT vs. from the base to the 25 cm interval. Moreover, the AEI revealed severe to moderate hypoxia in the study area. The limited presence of benthic foraminifera and calcium carbonate preservation corroborated that the quality of the lagoon's environment has deteriorated along with population growth, which requires strategic programs to sustain this transitional ecosystem.


Asunto(s)
Foraminíferos , Contaminantes Químicos del Agua , Humanos , Ecosistema , Sedimentos Geológicos/análisis , Foraminíferos/química , Aguas del Alcantarillado , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Carbonato de Calcio/análisis , Carbono/análisis , Nitrógeno/análisis
14.
New Phytol ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38073143

RESUMEN

Rising atmospheric carbon dioxide concentrations (CO2 ) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change. In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15 N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15 N, we also analyzed a subset of previously published foliar δ15 N values from across the United States to parse the effects of N deposition and CO2 rise. Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15 N also declined among all groups of plants and fungi; however, foliar δ15 N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15 N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2 rise. Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition.

15.
Glob Chang Biol ; 29(19): 5582-5595, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37477068

RESUMEN

Arctic food webs are being impacted by borealisation and environmental change. To quantify the impact of these multiple forcings, it is crucial to accurately determine the temporal change in key ecosystem metrics, such as trophic position of top predators. Here, we measured stable nitrogen isotopes (δ15 N) in amino acids in harp seal teeth from across the North Atlantic spanning a period of 60 years to robustly assess multi-decadal trends in harp seal trophic position, accounting for changes in δ15 N at the base of the food web. We reveal long-term variations in trophic position of harp seals which are likely to reflect fluctuations in prey availability, specifically fish- or invertebrate-dominated diets. We show that the temporal trends in harp seal trophic position differ between the Northwest Atlantic, Greenland Sea and Barents Sea, suggesting divergent changes in each local ecosystem. Our results provide invaluable data for population dynamic and ecotoxicology studies.


Asunto(s)
Caniformia , Phocidae , Animales , Ecosistema , Invertebrados , Cadena Alimentaria , Biomarcadores/metabolismo
16.
Sci Total Environ ; 900: 165795, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37499833

RESUMEN

Boreal forests play an important role in the global carbon (C) cycle, and there is great interest in understanding how they respond to environmental change, including nitrogen (N) and water limitation, which could impact future forest growth and C storage. Utilizing tree cores archived by the Swedish National Forest Inventory, we measured stemwood traits, including stable N and C isotope composition which provides valuable information related to N availability and water stress, respectively, as well as N and C content, and C/N ratio over 1950-2017 in two central Swedish counties covering an area of ca. 55,000 sq. km (n = 1038). We tested the hypothesis that wood traits are changing over time, and that temporal patterns would differ depending on alternative dendrochronological reconstruction methods, i.e. the commonly applied "single tree method" (STM) or a conceptually stronger "multiple tree method" (MTM). Averaged across all MTMs, our data showed that all five wood traits for Picea abies and Pinus sylvestris changed over time. Wood δ15N strongly declined, indicating progressive nitrogen limitation. The decline in δ13C tracked the known atmospheric δ13CO2 signal, suggesting no change in water stress occurred. Additionally, wood N significantly increased, while C and C/N ratios declined over time. Furthermore, wood trait patterns sometimes differed between dendrochronological methods. The most notable difference was for δ15N, where the slope was much shallower for the STM compared to MTMs for both species, indicating that mobility of contemporary N is problematic when using the STM, resulting in substantially less sensitivity to detect historical signals. Our study indicates strong temporal changes in boreal wood traits and also indicates that the field of dendroecology should adopt new methods and archiving practices for studying highly mobile element cycles, such as nitrogen, which are critical for understanding environmental change in high latitude ecosystems.


Asunto(s)
Ecosistema , Madera , Deshidratación , Bosques , Nitrógeno
17.
Front Microbiol ; 14: 1139633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152731

RESUMEN

Nitrogen (N) is an essential element for life. N compounds such as ammonium ( NH 4 + ) may act as electron donors, while nitrate ( NO 3 - ) and nitrite ( NO 2 - ) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water-rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+- HCO 3 - type fluids comprised mostly of NO 3 - , and Ca2+-OH- fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO 3 - . High concentrations of NO 3 - (>100 µM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO 3 - sourced from atmospheric deposition (rainwater NO 3 - : δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO 3 - produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 µM) with little NO 3 - detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO 3 - reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO 3 - was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO 3 - reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO 3 - . Production of NH 4 + as the end-product of NO 3 - reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.

18.
Sci Total Environ ; 885: 163843, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37137362

RESUMEN

Nitrogen (N) and phosphorus (P) are two crucial limiting mineral elements for terrestrial plants. Although the leaf N:P ratio is extensively used to indicate plant nutrient limitations, the critical N:P ratios cannot be universally applied. Some investigations have suggested that leaf nitrogen isotopes (δ15N) can provide another proxy for nutrient limitations along with the N:P ratio, but the negative relationships between N:P and δ15N were mainly limited to fertilization experiments. It will obviously benefit the study of the nature of nutrient limitations if the relationship could be explained more generally. We analyzed leaf δ15N, N, and P contents across a northeast-southwest transect in China. Leaf δ15N was weakly negatively correlated with leaf N:P ratios for all plants, while there was no correlation between them for various plant groups, including different growth forms, genera, and species across the entire N:P range. This suggests that the use of leaf δ15N in indicating the shift of nutrient limitations across the whole N:P range still requires more validated field investigations. Notably, negative relationships between δ15N and N:P hold for plants with N:P ratios between 10 and 20 but not for plants with N:P ratios lower than 10 or higher than 20. That is, changes in leaf δ15N along with the N:P ratio of plants that are co-limited by N and P can exhibit variations in plant nutrient limitations, whereas plants that are strictly limited by N and P cannot. Moreover, these relationships are not altered by vegetation type, soil type, MAP, or MAT, indicating that the use of leaf δ15N in reflecting shifts in nutrient limitations, depending on the plant nutrient limitation range, is general. We examined the relationships between leaf δ15N and the N:P ratio across an extensive transect, providing references for the widespread use of leaf δ15N in reflecting shifts in nutrient limitation.


Asunto(s)
Nitrógeno , Fósforo , Hojas de la Planta , Plantas , China , Ecosistema , Nitrógeno/análisis , Isótopos de Nitrógeno , Fósforo/análisis , Hojas de la Planta/química , Suelo
19.
Proc Jpn Acad Ser B Phys Biol Sci ; 99(5): 131-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164681

RESUMEN

Food web research is rapidly expanding through study of natural fractional abundance of 15N in individual amino acids. This paper overviews the principles of this isotope approach, and from my perspective, reanalyzes applications, and further extends the discussion. It applies kinetic isotope effects that enriches 15N in certain amino acids associated with the metabolic processes, which was clearly demonstrated by observations of both natural ecosystem and laboratory experiments. In trophic processes 'trophic amino acids' such as glutamic acid that significantly enrich 15N, whereas 'source amino acids' such as phenylalanine and methionine show little 15N enrichment. Through various applications conducted over the years, the principles of the method have shown to operate well and disentangle complex food webs and relevant problems. Applications include food chain length estimate, nitrogen resource assessment, tracking fish migration, and reconstruction of paleodiet. With this approach, considerations of a wide range of classical issues have been reinvigorated, while in the same time, new challenging frontiers are emerging.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Isótopos de Nitrógeno/análisis , Aminoácidos/química , Aminoácidos/metabolismo , Nitrógeno
20.
Glob Chang Biol ; 29(15): 4368-4382, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37089078

RESUMEN

Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co-occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulis Engelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12-9.51°C; estimated using fall-spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13 C) and nitrogen (δ15 N) stable isotope ratios, that emerged during drought. These co-occurring thresholds reflected the transition between energy- and water-limited tree growth (i.e., the E-W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth-defense trade-offs and drought adaptations. Furthermore, whitebark pine growing in energy-limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water-limited regions, threatening the long-term sustainability of the recently listed whitebark pine species in the Sierra Nevada.


Asunto(s)
Pinus , Árboles , Sequías , Agua , Carbono , Pinus/fisiología , Isótopos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA