Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Fluoresc ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028447

RESUMEN

Nitroxyl radical compounds, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), are stable radical compounds with a variety of unique characteristics, including fluorescence quenching. In this study, we investigated the fluorescence quenching effect of nortropine N-oxyl (NNO), which is a highly active nitroxyl radical that is more active than TEMPO in oxidation catalysis. The fluorescence intensity of 7-amino-4-methylcoumarin (AMC) was quenched by NNO and TEMPO to 5% and 95% of the initial fluorescence intensity, respectively, indicating highly efficient quenching by NNO. In addition, we used this reaction to measure glutathione concentration. The quenching effect of NNO was abrogated by the chemical reaction with glutathione, resulting in restoration of AMC fluorescence. This response was observed at glutathione concentrations from 10 µM to 1 mM, and good calibration curves were obtained from 10 to 250 µM.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124876, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39059141

RESUMEN

Nitroxyl (HNO) is an important reactive nitrogen that is associated with various states in physiology and pathology and plays a unique function in living systems. So, it is important to exploit fluorescent probes with high sensitivity and selectivity for sensing HNO. In this paper, a novel ratiometric fluorescent probe for HNO was developed utilizing intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET) mechanisms. The probe selected coumarin as energy donor, naphthalimide as energy receptor and 2-(diphenylphosphino)benzoate as the sensing site for detecting HNO. When HNO was not present, the 2-(diphenylphosphino)benzoate unit of the probe restricted electron transfer and the ICT process could not occur, leading to the inhibition of FRET process as well. Thus, in the absence of HNO the probe displayed the intrinsic blue fluorescence of coumarin. When HNO was added, the HNO reacted with the 2-(diphenylphosphino)benzoate unit of the probe to yield a hydroxyl group which resulting in the opening of ICT process and the occurring of FRET process. Thus, after providing HNO the probe displayed yellow fluorescence. In addition, the probe showed good linearity in the ratio of fluorescence intensity at 545 nm and 472 nm (I545 nm/I472 nm) with a concentration of HNO (0.1-20 µM). The probe processed a detection limit of 0.014 µM and a response time of 4 min. The probe also specifically identified HNO over a wide pH scope (pH = 4.00-10.00), including physiological conditions. Cellular experiments had shown that this fluorescent probe was virtually non-cytotoxic and could be applied for ratiometric sensing of HNO in A549 cells.

3.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928302

RESUMEN

An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Oxidación-Reducción , Tetrodotoxina , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Humanos , Animales , Tetrodotoxina/farmacología , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células HEK293 , Cloraminas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Compuestos de Tosilo
4.
J Magn Reson ; 363: 107703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781770

RESUMEN

Experimental confirmation of the manifestations of new spin exchange paradigm in EPR spectra of 14N nitroxide radical solutions is presented. It was shown that in the region of relatively low concentrations of radicals, the two side components of the spectrum have a mixed shape (the sum of the absorptive line and dispersive line). The dispersion contributions in these two lines have opposite signs. As the concentration of radicals increases, the contribution of dispersion passes through an extremum and in the region of maximum contribution of dispersion, the contribution of absorption to these two lines changes sign. In the region of high concentrations of radicals, when one homogeneously broadened line is practically observed, it turns out that these side components have resonant frequencies that do not coincide with the frequency of the center of gravity of the spectrum.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692102

RESUMEN

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Óxidos de Nitrógeno , Cumarinas/química , Humanos , Colorantes Fluorescentes/química , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Espectrometría de Fluorescencia , Células HeLa
6.
J Fluoresc ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430415

RESUMEN

Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N2O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10- 8 M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R2 = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.

7.
Chem Pharm Bull (Tokyo) ; 72(3): 249-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432905

RESUMEN

Electrochemical enzyme sensors are suitable for simple monitoring methods, for example, as glucose sensors for diabetic patients; however, they have several disadvantages arising from the properties of the enzyme. Therefore, non-enzymatic electrochemical sensors using functional molecules are being developed. In this paper, we report the electrochemical characterization of a new hydroxylamine compound, 7-azabicyclo[2.2.1]heptan-7-ol (ABHOL), and its application to glucose sensing. Although the cyclic voltammogram for the first cycle was unstable, it was reproducible after the second cycle, enabling electrochemical analysis of ethanol and glucose. In the first cycle, ABHOL caused complex reactions, including electrochemical oxidation and comproportionation with the generated oxoammonium ions. The electrochemical probe performance of ABHOL was more efficient than the typical nitroxyl radical compound, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), and had similar efficiency to 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO), which is activated by the bicyclic structure. The results demonstrated the advantages of ABHOL, which can be synthesized from inexpensive materials via simple methods.


Asunto(s)
Compuestos de Azabiciclo , Etanol , Glucosa , Humanos , Compuestos de Azabiciclo/química
8.
Yakugaku Zasshi ; 144(4): 339-344, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38556304

RESUMEN

Excessive production of reactive oxygen species (ROS) causes oxidative stress and is involved in the development and progression of a wide variety of diseases. Therefore, techniques for measuring oxidative stress are indispensable for analysis of the mechanisms of various diseases. The method involving ESR and the durable nitroxyl radical (ESR/spin probe method) is useful for this purpose, because the ESR signal intensity of the spin probe changes on reacting with ROS and other unstable radicals. In this review, the author's research applying the ESR/spin probe method to clarify disease mechanisms in vivo and in vitro is presented. The ESR signal of the probe injected into animals may decay through a few mechanisms besides reaction with ROS; thus, interpretation of the results is complicated. As the first approach to solving this problem, a probe resistant to enzymatic reduction by introducing a bulky group adjacent to the nitroxy group was created. The second approach was the use of a hydroxylamine probe which dominantly oxidized to nitroxyl radicals by reacting with superoxide anion radicals and oxidants. Using acyl-protected hydroxyl amine, it was demonstrated that sepsis model mice are under oxidative stress due to ROS production by activated phagocytes. On the other hand, it was shown in vitro that the UV-induced radical reaction of ketoprofen also occurs in lipid membranes, and that the reaction is related to ROS generation and membrane disruption. We believe that use of the ESR/spin probe method with ingenuity will clarify the mechanisms of various diseases.


Asunto(s)
Óxidos de Nitrógeno , Estrés Oxidativo , Ratones , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Especies Reactivas de Oxígeno , Radicales Libres
9.
Nitric Oxide ; 145: 49-56, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364967

RESUMEN

The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.


Asunto(s)
Colorimetría , Óxidos de Nitrógeno , Óxidos de Nitrógeno/química , Compuestos Azo
10.
Toxicol Rep ; 12: 1-9, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38173653

RESUMEN

Drug-induced steatohepatitis is considered more serious than drug-induced hepatic steatosis, so that differentiating between the two is crucial in drug development. In addition, early detection of drug-induced steatohepatitis is considered important since recovery is possible with drug withdrawal. However, no method has been established to differentiate between the two. In the development of drug-induced steatohepatitis, reactive oxygen species (ROS) is excessively generated in the liver. It has been reported that ROS can be monitored with electron spin resonance (ESR) and dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) by using nitroxyl radicals, which are known to participate in various in vivo redox reactions. The decay/reduction rate, which is an index for monitoring nitroxyl radicals, has been reported to be increased in tissues with excessive ROS levels other than liver, but decreased in methionine choline deficient (MCD) diet-induced steatohepatitis with excess ROS. Therefore, looking to differentiate between drug-induced hepatic steatosis and steatohepatitis, we examined whether the reduction rate decreases in steatohepatitis other than the MCD-diet induced disease and whether the decrease could be detected by MRI. We used STAM™ mice in which hepatic steatosis and steatohepatitis developed sequentially under diabetic conditions. 3-carbamoyl-PROXYL (CmP), one of the nitroxyl radicals, was injected intravenously during the MRI procedure and the reduction rate was calculated. The reduction rate was significantly higher in early steatohepatitis than in hepatic steatosis and the control. Excess ROS in early steatohepatitis was detected by an immunohistochemical marker for ROS. Therefore, it was indicated that the increase or decrease in the reduction rate in steatohepatitis differs depending on the model, and early steatohepatitis could be noninvasively differentiated from hepatic steatosis using CmP in MRI. Since the change in direction of the reduction rate in steatohepatitis in clinical studies could be predicted by confirming the reduction rate in preclinical studies, the present method, which can be used consistently in clinical and preclinical studies, warrants consideration as a candidate monitoring method for differentiating between early drug-induced steatohepatitis and hepatic steatosis in drug development.

11.
Angew Chem Int Ed Engl ; 62(51): e202314978, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37917039

RESUMEN

N-heterocyclic carbenes (NHCs) have garnered much attention due to their unique properties, such as strong σ-donating and π-accepting abilities, as well as their transition-metal-like reactivity toward small molecules. In 2015, we discovered that NHCs can react with nitric oxide (NO) gas to form radical adducts that resemble transition metal nitrosyl complexes. To elucidate the analogy between NHC and transition metal NO adducts, here we have undertaken a systematic investigation of the electron- and proton-transfer chemistry of [NHC-NO]⋅ (N-heterocyclic carbene nitric oxide radical) compounds. We have accessed a suite of compounds, comprised of [NHC-NO]+ , [NHC-NO]- , [NHC-NOH]0 , and [NHC-NHOH]+ species. In particular, [NHC-NO]- was isolated as potassium and lithium ion adducts. Most interestingly, a monomeric potassium [NHC-NO]- compound was isolated with the assistance of 18-crown-6, which is the first instance of a monomeric alkali N-oxyl compound to the best of our knowledge. Our results demonstrate that [NHC-NO]⋅ exhibits redox behavior broadly similar to metal nitrosyl complexes, which opens up more possibilities for utilizing NHCs to build on the known reactivity of metal complexes.

12.
Angew Chem Int Ed Engl ; 62(46): e202313014, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37735096

RESUMEN

Biomass photoreforming is a promising method to provide both a clean energy resource in the form of hydrogen (H2 ) and valuable chemicals as the results of water reduction and biomass oxidation. To overcome the poor contact between heterogeneous photocatalysts and biomass substrates, we fabricated a new photoredox cascade catalyst by combining a homogeneous catalyst, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), and a heterogeneous dual-dye sensitized photocatalyst (DDSP) composed of two Ru(II)-polypyridine photosensitizers (RuP6 and RuCP6 ) and Pt-loaded TiO2 nanoparticles. During blue-light irradiation (λ=460±15 nm; 80 mW), the DDSP photocatalytically reduced aqueous protons to form H2 and simultaneously oxidized TEMPO• radicals to generate catalytically active TEMPO+ . It oxidized biomass substrates (water-soluble glycerol and insoluble cellulose) to regenerate TEMPO• . In the presence of N-methyl imidazole as a proton transfer mediator, the photocatalytic H2 production activities for glycerol and cellulose reforming reached 2670 and 1590 µmol H2 (gTiO2 )-1  h-1 , respectively, which were comparable to those of state-of-the-art heterogeneous photocatalysts.

13.
Pathogens ; 12(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37624023

RESUMEN

Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical disease prevalent in Latin America. Infected patients are treated to eliminate the parasite, reduce the cardiomyopathy risk, and interrupt the disease transmission cycle. The World Health Organization recognizes benznidazole (BZ) and nifurtimox as effective drugs for CD treatment. In the chronic phase, both drugs have low cure rates and serious side effects. T. cruzi infection causes intense tissue inflammation that controls parasite proliferation and CD evolution. Compounds that liberate nitric oxide (NO) (NO donors) have been used as anti-T. cruzi therapeutics. Currently, there is no evidence that nitroxyl (HNO) affects T. cruzi infection outcomes. This study investigated the effects of the HNO donor Angeli's salt (AS) on C57BL/6 mice infected with T. cruzi (Y strain, 5 × 103 trypomastigotes, intraperitoneally). AS reduced the number of parasites in the bloodstream and heart nests and increased the protective antioxidant capacity of erythrocytes in infected animals, reducing disease severity. Furthermore, in vitro experiments showed that AS treatment reduced parasite uptake and trypomastigote release by macrophages. Taken together, these findings from the murine model and in vitro testing suggest that AS could be a promising therapy for CD.

14.
Trends Biochem Sci ; 48(9): 748-750, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331830

RESUMEN

Nitroxyl (HNO), a one-electron reduced and protonated congener of nitric oxide (•NO), was recently discovered in Arabidopsis thaliana. Due to its distinct chemical properties, we believe HNO must be further studied to determine how many physiological processes it impacts.


Asunto(s)
Arabidopsis , Óxido Nítrico , Óxidos de Nitrógeno/química , Biología
15.
Anal Sci ; 39(10): 1771-1775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37378820

RESUMEN

Nitroxyl radical compounds oxidize hydroxy groups and some amino groups upon application of an electric potential. The resulting anodic current depends on the concentration of these functional groups in solution. Thus, it is possible to quantify compounds containing these functional groups by electrochemical methods. Cyclic voltammetry has been used to evaluate the catalytic activity of nitroxyl radicals, and the ability of such radicals to sense biological and other compounds. In this study, we evaluated a method for quantifying compounds using constant-potential electrolysis (amperometry) of nitroxyl radicals for application in flow injection analysis and high-performance liquid chromatography as an electrochemical detector. When amperometry was performed using 2,2,6,6-tetramethylpiperidine 1-oxyl, a common nitroxyl radical compound, little change was observed even with 100 mM glucose due to its low reactivity in neutral aqueous solutions. In contrast, 2-azaadamantane N-oxyl and nortropine N-oxyl, which are highly active nitroxyl radicals, showed a concentration-dependent response in neutral aqueous solution. Responses of 33.8 and 125.9 µA, respectively, were observed. By recognition of hydroxy and amino groups, we have succeeded in the electrochemical detection of some drugs by amperometry. Streptomycin, an aminoglycoside antibiotic, was quantifiable in the range of 30-1000 µM.


Asunto(s)
Antibacterianos , Óxidos de Nitrógeno , Cromatografía Líquida de Alta Presión/métodos , Óxidos de Nitrógeno/química , Óxidos N-Cíclicos/química
16.
Nitric Oxide ; 136-137: 24-32, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217001

RESUMEN

Developing functional nitroxyl (HNO) donors play a significant role in the further exploration of endogenous HNO in biochemistry and pharmacology. In this work, two novel Piloty's acids (SBD-D1 and SBD-D2) were proposed by incorporating benzoxadiazole-based fluorophores, in order to achieve the dual-function of releasing both HNO and a fluorophore in situ. Under physiological conditions, both SBD-D1 and SBD-D2 efficiently donated HNO (t1/2 = 10.96 and 8.18 min, respectively). The stoichiometric generation of HNO was determined by both Vitamin B12 and phosphine compound trap. Interestingly, due to the different substitution groups on the aromatic ring, SBD-D1 with the chlorine showed no fluorescence emission, but SBD-D2 was strongly fluorescent due to the presence of the dimethylamine group. Specifically, the fluorescent signal would decrease during the release process of HNO. Moreover, theoretical calculations were performed to understand the emission difference. A strong radiation derived from benzoxadiazole with dimethylamine group due to the large transition dipole moment (∼4.3 Debye), while the presence of intramolecular charge transfer process in the donor with chlorine group caused a small transition dipole moment (<0.1 Debye). Finally, these studies would contribute to the future design and application of novel functional HNO donors for the exploration of HNO biochemistry and pharmacology.


Asunto(s)
Cloro , Óxidos de Nitrógeno , Óxidos de Nitrógeno/química , Ácidos Hidroxámicos/química , Colorantes Fluorescentes
17.
Yakugaku Zasshi ; 143(2): 95-100, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-36724933

RESUMEN

Organic nitroxyl radicals represented by 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) are known to be compounds that catalyze alcohol oxidation reactions. These catalytic reactions can be applied to a wide range of compounds with hydroxy and amino groups. It is also possible to selectively oxidize primary alcohols by designing the skeleton around the nitroxyl radical moiety for use in organic synthesis. Reactions can also be carried out by electrochemical methods, and the electrical current measured during the reaction can be used to quantify the substrates. Therefore, the combination of reactions catalyzed by nitroxyl radicals and electrochemical techniques is expected to be applied as a new analytical method. However, since the reaction does not proceed rapidly in neutral aqueous solutions, it has mostly been applied in basic aqueous solutions or organic solvents, and there have been no reports on sensor applications under physiological conditions. Herein, we have developed a novel catalyst, nortropine N-oxyl (NNO), which is highly active even in neutral aqueous solutions, and have found that it can be used for the analysis of biological components and drugs under physiological conditions. The combination of this method with enzymatic reactions made it possible to specifically detect certain compounds. In this review, we describe a novel analytical method that combines these nitroxyl radicals with electrochemical methods.


Asunto(s)
Óxidos de Nitrógeno , Agua , Oxidación-Reducción , Óxidos de Nitrógeno/química , Catálisis , Radicales Libres
18.
Antioxidants (Basel) ; 12(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36829960

RESUMEN

Nitroxides are potent tools for studying biological systems by electron paramagnetic resonance (EPR). Whatever the application, a certain stability is necessary for successful detection. Since conventional tetramethyl-substituted cyclic nitroxides have insufficient in vivo stability, efforts have recently been made to synthesize more stable, tetraethyl-substituted nitroxides. In our previous study on piperidine nitroxides, the introduction of steric hindrance around the nitroxide moiety successfully increased the resistance to reduction into hydroxylamine. However, it also rendered the carbon backbone susceptible to modifications by xenobiotic metabolism due to increased lipophilicity. Here, we focus on a new series of three nitroxide candidates with tetraethyl substitution, namely with pyrrolidine, pyrroline, and isoindoline cores, to identify which structural features afford increased stability for future probe design and application in in vivo EPR imaging. In the presence of rat liver microsomes, pyrrolidine and pyrroline tetraethyl nitroxides exhibited a higher stability than isoindoline nitroxide, which was studied in detail by HPLC-HRMS. Multiple metabolites suggest that the aerobic transformation of tetraethyl isoindoline nitroxide is initiated by hydrogen abstraction by P450-FeV = O from one of the ethyl groups, followed by rearrangement and further modifications by cytochrome P450, as supported by DFT calculations. Under anaerobic conditions, only reduction by rat liver microsomes was observed with involvement of P450-FeII.

19.
Anal Sci ; 39(3): 369-374, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36576651

RESUMEN

Nitroxyl radicals are known to electrochemically oxidize thiols as well as alcohols and amines. In this study, a preliminary investigation of the electrochemical reaction of thiols with 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO), 2-azaadamantane N-oxyl (AZADO), and nortropine N-oxyl (NNO), which are highly active due to their bicyclo structures, for use in electrochemical analysis was performed and the results were compared with those for a typical nitroxyl radical compound, 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO). Mercaptopropane sulfonic acid (MPS) was used as a model compound to investigate the electrochemical response in aqueous solution. In addition, electrochemical detection of glutathione, a biological thiol molecule, was performed.

20.
J Basic Clin Physiol Pharmacol ; 34(5): 683-687, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455291

RESUMEN

OBJECTIVES: The main function of myenteric neurons is the control of gut motility. As we recently showed that nitroxyl (HNO) induces intestinal smooth muscle relaxation, it was of interest to evaluate the effects of this signalling molecule on myenteric neurons in order to distinguish its properties in regard to myocytes. METHODS: Myenteric neurons isolated from the ileum of 4-10 days old rats were used. HNO-induced changes in intracellular concentration of Ca2+ or membrane potential and ion currents were measured using the Ca2+-sensitive fluorescent dye fura-2 AM or by electrophysiological whole-cell recordings, respectively. Changes in intracellular thiol groups pool were evaluated using thiol tracker violet. Angeli's salt was used as HNO donor. RESULTS: The HNO donor Angeli's salt induced a significant increase in the cytosolic Ca2+ concentration at the concentration 50 µM and a membrane hyperpolarization from a resting membrane potential of -56.1 ± 8.0 mV to -63.1 ± 8.7 mV (n=7). Although potassium channels primarily drive membrane potential changes in these cells, outwardly rectifying potassium currents were not significantly affected by 50 µM Angeli's salt. Fast inward sodium currents were slightly but not significantly reduced by HNO. In more sensitive cells, HNO tended to reduce the pool of thiol groups. CONCLUSIONS: As in the case of smooth muscle cells, HNO causes hyperpolarization of myenteric neurons, an effect also associated with an increase in intracellular Ca2+ concentration. Pathways other than activation of potassium currents appear to drive the hyperpolarization evoked by HNO.


Asunto(s)
Gases , Nitritos , Ratas , Animales , Neuronas , Compuestos de Sulfhidrilo , Motilidad Gastrointestinal , Potasio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA