Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 446: 130744, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36630874

RESUMEN

Effective and selective removal of 99TcO4-, one of the most nuisance radionuclides in nuclear waste, is highly desirable but remains a significant challenge. Herein, two isostructural MOFs, NCU-3-X (X = Cl, Br) were constructed by ZnX2 coordinated to nitrogen-containing neutral ligand tri(4-(1H-imidazole-1-l) phenyl) amine for efficient adsorption ReO4-/TcO4-. Owning to the twofold interpenetrating structure, both of them exhibit strong alkaline resistance. Consequently, NCU-3-Br exhibited superior adsorption performances with a maximum capacity as high as 483 mg/g, which is 2.23 times larger than that of NCU-3-Cl. The primary reasons accounting for the enhanced adsorption performances of NCU-3-Br are that compared to chlorine atoms, the smaller electronegativity of bromine atoms as halogen bonds donor can facilitate the formation of σ-holes, enhance positively charged skeleton, and reduce the adsorption energy associated with ReO4-/TcO4-. In addition, the one-dimensional hydrophobic channels in the NCU-3-Br framework enable NCU-3-Br to have highly selective toward ReO4-, which has a low relative charge density against interfering ions. The SRS simulation removal experiment further confirmed the excellent adsorption capacity of NCU-3-Br to ReO4-/TcO4-. This work illustrated that the halogenated new strategy incorporated different halogen atoms into MOF skeletons can dramatically modulate the adsorption performances for ReO4-/TcO4-.

2.
Environ Sci Technol ; 56(20): 14817-14827, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36184803

RESUMEN

The mobility of 79Se, a fission product of 235U and long-lived radioisotope, is an important parameter in the safety assessment of radioactive nuclear waste disposal systems. Nonradioactive selenium is also an important contaminant of drainage waters from black shale mountains and coal mines. Highly mobile and soluble in its high oxidation states, selenate (Se(VI)O42-) and selenite (Se(IV)O32-) oxyanions can interact with magnetite, a mineral present in anoxic natural environments and in steel corrosion products, thereby being reduced and consequently immobilized by forming low-solubility solids. Here, we investigated the sorption and reduction capacity of synthetic nanomagnetite toward Se(VI) at neutral and acidic pH, under reducing, oxygen-free conditions. The additional presence of Fe(II)aq, released during magnetite dissolution at pH 5, has an effect on the reduction kinetics. X-ray absorption spectroscopy analyses revealed that, at pH 5, trigonal gray Se(0) formed and that sorbed Se(IV) complexes remained on the nanoparticle surface during longer reaction times. The Se(0) nanowires grew during the reaction, which points to a complex transport mechanism of reduced species or to active reduction sites at the tip of the Se(0) nanowires. The concomitant uptake of aqueous Fe(II) and Se(VI) ions is interpreted as a consequence of small pH oscillations that result from the Se(VI) reduction, leading to a re-adsorption of aqueous Fe(II) onto the magnetite, renewing its reducing capacity. This effect is not observed at pH 7, where we observed only the formation of Se(0) with slow kinetics due to the formation of an oxidized maghemite layer. This indicates that the presence of aqueous Fe(II) may be an important factor to be considered when examining the environmental reactivity of magnetite.


Asunto(s)
Nanocables , Residuos Radiactivos , Compuestos de Selenio , Selenio , Adsorción , Carbón Mineral , Óxido Ferrosoférrico/química , Oxidación-Reducción , Ácido Selénico , Ácido Selenioso/química , Selenio/química , Acero
3.
Sensors (Basel) ; 19(12)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216774

RESUMEN

The characterisation of buried radioactive wastes is challenging because they are not readily accessible. Therefore, this study reports on the development of a method for integrating ground-penetrating radar (GPR) and gamma-ray detector measurements for nonintrusive characterisation of buried radioactive objects. The method makes use of the density relationship between soil permittivity models and the flux measured by gamma ray detectors to estimate the soil density, depth and radius of a disk-shaped buried radioactive object simultaneously. The method was validated using numerical simulations with experimentally-validated gamma-ray detector and GPR antenna models. The results showed that the method can simultaneously retrieve the soil density, depth and radius of disk-shaped radioactive objects buried in soil of varying conditions with a relative error of less than 10%. This result will enable the development of an integrated GPR and gamma ray detector tool for rapid characterisation of buried radioactive objects encountered during monitoring and decontamination of nuclear sites and facilities.

4.
Sensors (Basel) ; 18(5)2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783644

RESUMEN

This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method.

5.
Sensors (Basel) ; 18(2)2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29419759

RESUMEN

Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA