Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Plant Sci ; 13: 868581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874027

RESUMEN

The largest family of disease resistance genes in plants are nucleotide-binding site leucine-rich repeat genes (NLRs). The products of these genes are responsible for recognizing avirulence proteins (Avr) of phytopathogens and triggering specific defense responses. Identifying NLRs in plant genomes with standard gene annotation software is challenging due to their multidomain nature, sequence diversity, and clustered genomic distribution. We present the results of a genome-wide scan and comparative analysis of NLR loci in three coffee species (Coffea canephora, Coffea eugenioides and their interspecific hybrid Coffea arabica). A total of 1311 non-redundant NLR loci were identified in C. arabica, 927 in C. canephora, and 1079 in C. eugenioides, of which 809, 562, and 695 are complete loci, respectively. The NLR-Annotator tool used in this study showed extremely high sensitivities and specificities (over 99%) and increased the detection of putative NLRs in the reference coffee genomes. The NLRs loci in coffee are distributed among all chromosomes and are organized mostly in clusters. The C. arabica genome presented a smaller number of NLR loci when compared to the sum of the parental genomes (C. canephora, and C. eugenioides). There are orthologous NLRs (orthogroups) shared between coffee, tomato, potato, and reference NLRs and those that are shared only among coffee species, which provides clues about the functionality and evolutionary history of these orthogroups. Phylogenetic analysis demonstrated orthologous NLRs shared between C. arabica and the parental genomes and those that were possibly lost. The NLR family members in coffee are subdivided into two main groups: TIR-NLR (TNL) and non-TNL. The non-TNLs seem to represent a repertoire of resistance genes that are important in coffee. These results will support functional studies and contribute to a more precise use of these genes for breeding disease-resistant coffee cultivars.

2.
Braz. arch. biol. technol ; Braz. arch. biol. technol;62: e19180331, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1055408

RESUMEN

Abstract Pyrenophora teres f. maculata is the causal agent of barley spot form net blotch (SFNB), a major stubble-borne disease in many barley-growing areas worldwide. In plants, the Nucleotide-Binding Site-Leucine-Rich Repeat (NBS-LRR) gene family functions in immunity against a variety of pathogens and pests. From a pre-established set of NBS-type resistance gene candidates, we have selected three candidate genes, HvNBS10, HvNBS72 and HvNBS85, to analyze their possible involvement in P. teres f. maculata resistance. The studied genes were mapped on chromosomes 5H and 7H. Expression profiles using qRT-PCR, 48 hours after infection by P. teres. f. maculata, revealed that the transcription of all genes acted in the same direction (down-regulation) in both resistant and susceptible cultivars, although they showed a variation in transcript dosage. This result suggests that coordinated transcriptional responses of multiple barley NBS genes would be required to an efficient response against P. teres f. maculata. Moreover, the phylogenetic analysis revealed that the studied barley candidate R genes were characterized by a high homology with the barley Nbs2-Rdg2a gene conferring resistance to the fungus Pyrenophora graminea, suggesting a common origin of P. graminea and P. teres resistance genes in barley, following pathogens evolution. The genes characterized in the present study hold potential in elucidating the molecular pathways and developing novel markers associated with SFNB resistance in barley.


Asunto(s)
Hordeum , Leucina , Nucleótidos , Filogenia
3.
Genet Mol Biol ; 33(2): 292-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21637485

RESUMEN

A large set of candidate nucleotide-binding site (NBS)-encoding genes related to disease resistance was identified in the sorghum (Sorghum bicolor) genome. These resistance (R) genes were characterized based on their structural diversity, physical chromosomal location and phylogenetic relationships. Based on their N-terminal motifs and leucine-rich repeats (LRR), 50 non-regular NBS genes and 224 regular NBS genes were identified in 274 candidate NBS genes. The regular NBS genes were classified into ten types: CNL, CN, CNLX, CNX, CNXL, CXN, NX, N, NL and NLX. The vast majority (97%) of NBS genes occurred in gene clusters, indicating extensive gene duplication in the evolution of S. bicolor NBS genes. Analysis of the S. bicolor NBS phylogenetic tree revealed two major clades. Most NBS genes were located at the distal tip of the long arms of the ten sorghum chromosomes, a pattern significantly different from rice and Arabidopsis, the NBS genes of which have a random chromosomal distribution.

4.
Genet. mol. biol ; Genet. mol. biol;33(2): 292-297, 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-548818

RESUMEN

A large set of candidate nucleotide-binding site (NBS)-encoding genes related to disease resistance was identified in the sorghum (Sorghum bicolor) genome. These resistance (R) genes were characterized based on their structural diversity, physical chromosomal location and phylogenetic relationships. Based on their N-terminal motifs and leucine-rich repeats (LRR), 50 non-regular NBS genes and 224 regular NBS genes were identified in 274 candidate NBS genes. The regular NBS genes were classified into ten types: CNL, CN, CNLX, CNX, CNXL, CXN, NX, N, NL and NLX. The vast majority (97 percent) of NBS genes occurred in gene clusters, indicating extensive gene duplication in the evolution of S. bicolor NBS genes. Analysis of the S. bicolor NBS phylogenetic tree revealed two major clades. Most NBS genes were located at the distal tip of the long arms of the ten sorghum chromosomes, a pattern significantly different from rice and Arabidopsis, the NBS genes of which have a random chromosomal distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA