Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.092
Filtrar
1.
Sci Rep ; 14(1): 21553, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284860

RESUMEN

To investigate the dispersion process of the underground toxic gas carbon monoxide (CO) into the refuge chamber during a mine disaster and enhance the survival rate of trapped miners, a simplified model of an underground refuge chamber and the main roadway was constructed. The impact of temperature and pressurized air volume on CO dispersion into the refuge chamber has been examined through both analog experiments and numerical simulations, and the reliability of the simulation results was verified. The results indicate that CO dispersion into the refuge chamber through the top of the protective isolation door occurs when the temperature in the refuge chamber is lower than that of the toxic gas. When the temperature of the toxic gas is higher, it tends to enter the refuge chamber through the bottom of the protective isolation door. The evolution of CO concentration in the transition chamber can be divided toxic survival chamber can be categorized into a sudden decline stage and a stable stage. And a flexible isolation door designed to control the entry of toxic gases into the refuge chamber was implemented, and its impact on CO dispersion has been compared and analyzed. When the temperature of the main roadway is 50 °C and the temperature of the refuge chamber is 20 °C, the required pressurized air volume to maintain the CO concentration within the safe threshold (24 ppm) is reduced to 69.6% of that needed without the isolation door, thereby significantly reducing the infiltration of harmful gases from the main roadway into the refuge chamber.

2.
Ultrason Sonochem ; 111: 107066, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288594

RESUMEN

Cavitation noise is the major noise in underwater, and the study of acoustic radiation from bubble clusters is the primary means to reveal the mechanism of cavitation noise. In this study, direct numerical simulation (DNS) of bubble clusters with volume fractions of 20-40 % with different bubble sizes and bubble position distributions are performed, and the far-field sound pressure is calculated using the Ffowcs Williams-Hawkings (FW-H) method. Then, we compare the collapse and acoustic radiation of bubble clusters with equivalent bubble. The results show that the collapse times of bubble clusters at the same volume fraction are identical and close to equivalent bubble, despite the different bubble sizes and positions in the bubble cluster. Further, in terms of acoustic radiation, the layered arrangement of bubble positions results in bubble clusters exhibiting layer-by-layer collapse and emitting multiple sound pressure pulses. In contrast, a random arrangement of bubble positions lacks this feature, resulting in the collapse of the bubble cluster without a layered phenomenon and radiating only a single primary sound pulse, which is consistent with the equivalent bubble. Additionally, the distribution of bubble sizes in the bubble cluster has almost no effect on the acoustic radiation of the bubble cluster. Notably, when the volumetric fraction exceeds 25 %, the sound pressure levels of bubble clusters with different distributions in the frequency domain are nearly identical, with differences from the equivalent bubble within 5 dB.

3.
Sci Rep ; 14(1): 21294, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266603

RESUMEN

With the increase in high-rise buildings in cities, public flue exhaust systems have a direct impact on residential air quality and the living environment. Although existing studies have analyzed the problems in public flue exhaust systems through computational fluid dynamics (CFD) numerical simulations and experimental tests, these studies often lack an in-depth exploration of the specific impacts of individual components in the system. To solve this problem, this study not only thoroughly analyzes the key components in the public flue system, such as branch pipes, check valves, and tee pipes, but also develops a parametric public flue simulation system software based on C# and verifies the accuracy of the simulation through experiments. The study first determines the key parameters affecting the comprehensive resistance coefficient of the branch pipe, check valve, tee pipe, and other components through CFD simulation and experimental testing. Subsequently, a visualization program is developed using the C# language, which can quickly simulate and visualize the flow changes in the flue according to different building parameters such as the number of floors, height of floors, and size of the flue. The results confirm that the program can efficiently predict the flow distribution under different design options, providing a practical tool for the optimal design and performance evaluation of public flues, which is important for improving the air quality of the living environment.

4.
Data Brief ; 56: 110850, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39281015

RESUMEN

Plastic particle pollution has threatened the well-being of seawater ecosystems over the past decades. Therefore, understanding, modeling and (potentially) predicting the dynamics of microplastics and biogenic particles in ocean turbulence is of utmost importance to help develop mitigation strategies and propose technological solutions ultimately aimed at safeguarding global water systems. This is particularly significant for microplastics in the upper-ocean layer. To that end, this work presents a comprehensive and openly accessible dataset carefully designed to explore the interplay between the flow physics of particle-laden turbulence and the physicochemical effects of biofilm stickiness. The dataset comprises nine point-particle direct numerical simulations of fluid flow featuring microplastic and biogenic debris within a periodic three-dimensional flow domain. In all cases, the chosen turbulent intensity and microparticle properties represent conditions observed in the upper-ocean layer. This data repository aims to facilitate in-depth exploration, modeling and prediction of the intricate flow physics observed in marine microplastics, particularly regarding their distribution and aggregation.

5.
Heliyon ; 10(17): e37164, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286107

RESUMEN

In order to explore the self-priming characteristics of the self-priming pump at the mobile pump truck, this paper established a complete three-dimensional circulatory piping system including the self-priming pump, tank, valves, inlet pipe and outlet pipe. The UDF(User Defined Functions) was used to realize the acceleration-constant speed operation process of the impeller, thus reflecting the actual changing state of the rotational speed. Based on the VOF(Volume Of Fluid) multiphase flow model and the Realizable k-ε turbulence model, a coupled numerical calculation of unsteady incompressible viscous flow was conducted for its self-priming process. The results show that the self-priming process of the pump can be roughly divided into four stages: the rapid suction stage, the shock exhaust stage, the rapid exhaust period and the pump residual gas discharge stage. The proportion of each stage in the total self-priming time showed an increasing trend. During the rapid suction stage, the water level in the vertical section of the inlet pipe showed a slow and then fast-rising pattern. During the shock exhaust stage, the average gas-phase volume fraction in the volute is lower than that of the impeller, and the gas content at the volute outlet is lower than that of the impeller inlet. The region at the inlet and outer edge of the impeller consistently experience significant energy losses.

6.
Data Brief ; 56: 110828, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39281009

RESUMEN

A comprehensive investigation of geothermal reservoirs is essential to optimize geothermal energy production and move toward a more sustainable energy future. Various analysis methods and tools have been developed to estimate reservoir conditions and reservoir structures based on geophysical surveys, well data, and other measurement data. In the case of real field data, the actual subsurface structure is unknown, making it difficult to verify the validity of the methods and tools each develops. This data article classifies Japanese geothermal reservoirs and selects two representative structures, which can be representative models for many geothermal fields. Numerical simulations are used to calculate natural conditions and obtain simulated observation data. This paper outlines the methodology employed to construct the reservoir models and to conduct the reservoir simulation. It also describes the approach used to generate resistivity data. The datasets include important reservoir configuration parameters such as rock type, porosity, permeability, rock density, thermal conductivity, and specific heat. It also includes temperature, pressure, and resistivity maps that represent pseudo-geophysical exploration and well data. This comprehensive data set is a valuable resource for further research and analysis in the field of geothermal energy.

7.
Entropy (Basel) ; 26(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39330101

RESUMEN

The space fractional advection-diffusion equation is a crucial type of fractional partial differential equation, widely used for its ability to more accurately describe natural phenomena. Due to the complexity of analytical approaches, this paper focuses on its numerical investigation. A lattice Boltzmann model for the spatial fractional convection-diffusion equation is developed, and an error analysis is carried out. The spatial fractional convection-diffusion equation is solved for several examples. The validity of the model is confirmed by comparing its numerical solutions with those obtained from other methods The results demonstrate that the lattice Boltzmann method is an effective tool for solving the space fractional convection-diffusion equation.

8.
Membranes (Basel) ; 14(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39330524

RESUMEN

Chemical warfare agents that are liquids with low vapor pressure pose a contact hazard to anyone who encounters them. Personal protective equipment (PPE) is utilized to ensure safe interaction with these agents. A commonly used method to characterize the permeability of PPE towards chemical weapons is to apply droplets of the liquid agent to the surface of the material and measure for chemical breakthrough. However, this method could produce errors in the estimated values of the transport properties. In this paper, we solved numerically the three-dimensional cylindrical Fick's second law of diffusion for a liquid permeating through a non-porous rubbery membrane to determine the time the permeating species will emerge on the other side of the polymer membrane. Simulations of different amounts of surface area coverage and the geometries of permeate on the membrane surface indicated that incomplete surface area coverage affects the estimation of the transport properties, making the experimentally determined transport properties unsuitable for predictive use. We simulated different permeation values to determine the factors that most influenced the estimation error and if the error was consistent over different permeate-membrane combinations. Finally, a method to correct the experimentally determined permeability is suggested.

9.
Heliyon ; 10(18): e37626, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309909

RESUMEN

This study utilized FLUENT dynamic mesh simulation technology to simulate the temperature field distribution characteristics during the continuous casting (CC) process of 5 mm thick Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vit1) bulk metallic glass (BMG), analyzed and discussed the amorphous forming ability of the Vit1 BMG plate prepared through CC. The results indicate that during the CC process, the temperature gradient and cooling rate of Vit1 BMG plate decrease with increasing distance from the cooling copper block surface and prolonged solidification time. Even at the lowest cooling rate, it still remains significantly higher than the critical cooling rate (R c) of Vit1 bulk amorphous alloy. The temperature variations recorded by the thermocouple during the alloy melt solidification process are in basic agreement with the simulation data. The experimental test and simulation results show that 5 mm thick Vit1 BMG slab can be prepared theoretically by continuous casting technology. Finally, XRD, DSC and TEM were used to analyze the amorphous formation ability and microstructure of the Vit1 BMG slab.

10.
Heliyon ; 10(18): e37513, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309937

RESUMEN

Theoretical and experimental investigation of two-stage optical parametric generator based on magnesium oxide doped periodically poled lithium niobate (MgO:PPLN) crystal and optical parametric amplifier based on lithium triborate (LBO) crystal is presented. The first stage crystal was pumped by the subnanosecond fundamental harmonic at 1064 nm wavelength. In the theoretical description, the input signal and idler photons are described by the quantum model and their further amplification is tracked by simulating the nonlinear coupling equations. Such description allows the analysis of pulsed beam evolution during the propagation in the nonlinear crystal under strong pump depletion regime. The second stage crystal was seeded by the output signal wave of the first stage and pumped by the third harmonic of the laser radiation. Experimentally, tuning in the visible wavelength ranges and high pulse power (up to 20 mW at 475 nm wavelength) were achieved.

11.
Front Cell Dev Biol ; 12: 1351974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310225

RESUMEN

Recent advancements in omics and single-cell analysis highlight the necessity of numerical methods for managing the complexity of biological data. This paper introduces a simulation program for biochemical reaction systems based on the natural number simulation (NNS) method. This novel approach ensures the equitable treatment of all molecular entities, such as DNA, proteins, H2O, and hydrogen ions (H+), in biological systems. Central to NNS is its use of stoichiometric formulas, simplifying the modeling process and facilitating efficient and accurate simulations of diverse biochemical reactions. The advantage of this method is its ability to manage all molecules uniformly, ensuring a balanced representation in simulations. Detailed in Python, NNS is adept at simulating various reactions, ranging from water ionization to Michaelis-Menten kinetics and complex gene-based systems, making it an effective tool for scientific and engineering research.

12.
Sci Total Environ ; 954: 176241, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299308

RESUMEN

Theoretical research has explained the process of dioxin (DXN) formation in the municipal solid waste incineration (MSWI). This process includes the generation, adsorption, and emission of DXN. Actual DXN concentrations often significantly deviate from theoretical models. This discrepancy is influenced by several key factors: the type of integrated municipal solid waste (MSW) treatment process, the characteristics of the waste, and the operational controls. The progression of DXN generation, adsorption, and emission concentrations within the MSWI process remains unclear. This lack of clarity is especially pronounced when examining the accounting for the specific components of the MSW. To unravel the evolution of DXN, this article proposes a comprehensive numerical simulation model for the entire process of DXN concentration in an MSWI plant. The model is designed based on existing knowledge of MSW combustion and DXN mechanisms, leveraging FLIC and ASPEN simulation software. It incorporates six key stages to facilitate the DXN simulation: precipitation and formation, high-temperature pyrolysis, high-temperature gas-phase synthesis, low-temperature catalytic synthesis, adsorption on activated carbon, and emission to the atmosphere. Under both benchmark and multiple operating conditions, the simulated experiments confirm the effective representation of the evolution of DXN concentrations throughout the process. Consequently, this study presents a model designed to enhance the development of strategies aimed at reducing DXN emissions and to foster innovation in intelligent control technologies.

13.
Heliyon ; 10(18): e37667, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309802

RESUMEN

There are a series of engineering risks, such as ground subsidence, building tilt and cracking, in the process of shield tunnel driving through buildings, which have many adverse effects on urban residents and engineers. In particular, the differences in the effects of the interaction of two-lane tunnels on the building structure and ground deformation field are less often considered under different spatial effects such as construction sequences and tunnel spacings. As well as the problem of analyzing the building as a whole out of reality. To solve these problems, the spatial effect of the shield tunnel underpassing the shallow foundation building is simulated by Plaxis3D software to study the sensitivity analysis of surface settlement and the internal forces and deformation law of the building above in the process of tunneling underpassing with different depths of burial H and horizontal distance D of the double line tunnel. The engineering impact zoning method can investigate the safety of tunnels and buildings under different spatial effects when tunnels pass through buildings. The splitting of the building into plates and columns can reveal the forces and deformation laws of different structural parts. The results show that during the construction process of the double-line tunnel, the tunnel constructed first has a "blocking effect" on the tunnel constructed later, which affects the distribution of the disturbance area to a certain extent and changes the curve shape of the settlement trough. When the "blocking effect" occurs, the surface settlement and building deformation will be significantly reduced. In the internal forces of the building, the plate structure is mainly subjected to changes in axial forces, while the column structure is mainly affected by shear forces and bending moments. The factor of safety of tunnels decreases as the tunnel spacing decreases and as the building loads above increase.

14.
Sci Rep ; 14(1): 20347, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223188

RESUMEN

The study of hydrogen concentration distribution law of hydrogen-doped methane pipeline is directly related to the safety and stability of hydrogen-doped methane pipeline network. Based on the theory of fluid dynamics, this paper established a model of hydrogen-doped methane pipeline and simulated the operation and shutdown status of hydrogen-doped methane pipeline by adopting the computational fluid dynamics method and selecting the mixture multiphase model and standard k - ε turbulence model. This paper investigates the hydrogen concentration distribution law in hydrogen-doped methane pipelines as well as the influence law of different hydrogen-doping ratios, operating flow velocities, operating pressures, shutdown time and gas usage on the hydrogen concentration distribution in gas pipeline. The results show that: under the operation condition, there is a weak uneven distribution of hydrogen in the pipeline, the hydrogen-doping ratio, flow velocity, pressure on the hydrogen volume fraction of the change in the 0.9% or less, the effect can be ignored; in the shutdown status, there is a clear stratification phenomenon, the hydrogen-doping ratio increased from 10 to 25%, the change in the volume fraction of hydrogen in the 11.2% or less, a positive correlation; with the extension of the shutdown time to 900s, the pipeline firstly appeared obvious stratification phenomenon in the branch pipe, the thickness of the gas with hydrogen volume fraction above 40% on the upper wall surface of the branch pipe increased to 0.7 mm, and after the shutdown time was extended to 10 h, obvious stratification phenomenon appeared in the main pipeline, and the volume fraction of hydrogen near the top of the main pipe of about 16.5 mm was above 30%, which was positively correlated; In the shutdown status, the shutdown time has the greatest effect on the stratification phenomenon in the pipe, followed by the hydrogen-doping ratio, and the gas usage has the least effect.

15.
Comput Methods Programs Biomed ; 257: 108383, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39260163

RESUMEN

INTRODUCTION: This study aimed to investigate the efficacy of a small-gauge microwave ablation antenna (MWA) with an enhanced cooling system (ECS) for generating more spherical ablation zones. METHODS: A comparison was made between two types of microwave ablation antennas, one with ECS and the other with a conventional cooling system (CCS). The finite element method was used to simulate in vivo ablation. Two types of antennas were used to create MWA zones for 5, 8, 10 min at 50, 60, and 80 W in ex vivo bovine livers (n = 6) and 5 min at 60 W in vivo porcine livers (n = 16). The overtreatment ratio, ablation aspect ratio, carbonization area, and other characteristcs of antennas were measured and compared using numerical simulation and gross pathologic examination. RESULTS: In numerical simulation, the ECS antenna demonstrated a lower overtreatment ratio than the CCS antenna (1.38 vs 1.43 at 50 W 5 min, 1.19 vs 1.35 at 50 W 8 min, 1.13 vs 1.32 at 50 W 10 min, 1.28 vs 1.38 at 60 W 5 min, 1.14 vs 1.32 at 60 W 8 min, 1.10 vs 1.30 at 60 W 10 min). The experiments revealed that the ECS antenna generated ablation zones with a more significant aspect ratio (0.92 ± 0.03 vs 0.72 ± 0.01 at 50 W 5 min, 0.95 ± 0.02 vs 0.70 ± 0.01 at 50 W 8 min, 0.96 ± 0.01 vs 0.71 ± 0.04 at 50 W 10 min, 0.96 ± 0.01 vs 0.73 ± 0.02 at 60 W 5 min, 0.94 ± 0.03 vs 0.71 ± 0.03 at 60 W 8 min, 0.96 ± 0.02 vs 0.69 ± 0.04 at 60 W 10 min) and a smaller carbonization area (0.00 ± 0.00 cm2 vs 0.54 ± 0.06 cm2 at 50 W 5 min, 0.13 ± 0.03 cm2 vs 0.61 ± 0.09 cm2 at 50 W 8 min, 0.23 ± 0.05 cm2 vs 0.73 ± 0.05 m2 at 50 W 10 min, 0.00 ± 0.00 cm2 vs 1.59 ± 0.41 cm2 at 60 W 5 min, 0.23 ± 0.22 cm2 vs 2.11 ± 0.63 cm2 at 60 W 8 min, 0.57 ± 0.09 cm2 vs 2.55 ± 0.51 cm2 at 60 W 10 min). Intraoperative ultrasound images revealed a hypoechoic area instead of a hyperechoic area near the antenna. Hematoxylin-eosin staining of the dissected tissue revealed a correlation between the edge of the ablation zone and that of the hypoechoic area. CONCLUSIONS: The ECS antenna can produce more spherical ablation zones with less charring and a clearer intraoperative ultrasound image of the ablation area than the CCS antenna.

16.
Sci Rep ; 14(1): 21235, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261635

RESUMEN

Predictive models for spatial correlation play an effective role in the assessment of seismic risk associated with distributed infrastructure and building portfolios. However, existing models often rely on simplified approaches, assuming isotropy and stationarity. This paper verifies these assumptions by presenting a comprehensive study using a database of 3D physics-based simulated broadband ground motions for Istanbul, generated by the SPEED software. The results reveal significant event-to-event variability and nonstationary and anisotropic characteristics of spatial correlation influenced by source, path, and site effects. The development of nonstationary correlation models requires exploring influential metrics beyond spatial proximity and gaining a deep understanding of their impact, which is the focus of this study. Analysis of the spatial correlations of peak ground displacement, peak ground velocity, peak ground acceleration, and response spectral accelerations at different periods, employing both stationary and nonstationary correlation modelling methods and considering the finite fault model, indicates that the slip distribution pattern, direction and distance of station pairs relative to earthquake rupture, soil softness, and homogeneity of soil properties significantly influence the spatial correlations of near-field earthquake ground motions. Implementation of the introduced parameters in predictive spatial correlation models enhances the precision of regional seismic hazard assessments.

17.
Heliyon ; 10(16): e36341, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39262948

RESUMEN

In field hydraulic fracturing operation of shale gas development, the high pressure and large displacement liquid-particle two-phase fracturing fluid can be forced to change direction many times through high-pressure double-elbow, and be transported from the outlet pipeline of the fracturing pump to the main pipeline. The high-pressure double-elbow is prone to be affected by erosion wear and Fluid-Structure Interaction (FSI), resulting in perforation and fracture, posing a potential safety threat to field operation. In this study, we conducted the erosion wear experiments on 35CrMo steel used for high-pressure double-elbow in shale-gas fracturing. The erosion rates under different impact angles and flow velocities were obtained, and proposed a novel model of erosion prediction for high-pressure double-elbow. Then the numerical investigation was employed to conduct a comprehensive analysis of erosion wear, structural stress and deformation by the coupling of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). The effects of structural parameters such as connection straight pipe length, pipe inner diameter and fluid turning direction were discussed. The results indicate that with the increase of connection straight pipe length, the flow erosion decreases first then varies little, and the deformation gradually increases. Slight erosion wear but large structural stress and deformation in major inner diameter pipe. And the minimum degree of erosion and flow-induced deformation present with the fluid turning direction of double-elbow as 0°. The study can provide references for the design, installation and detection of high-pressure double-elbow and ensure safety in the process of shale gas fracturing.

18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 790-797, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39218606

RESUMEN

To address the conflict between the "fitness" and "feasibility" of body-fitted stents, this paper investigates the impact of various smoothing design strategies on the mechanical behaviour and apposition performance of stent. Based on the three-dimensional projection method, the projection region was fitted with the least squares method (fitting orders 1-6 corresponded to models 1-6, respectively) to achieve the effect of smoothing the body-fitted stent. The simulation included the crimping and expansion process of six groups of stents in stenotic vessels with different degrees of plaque calcification. Various metrics were analyzed, including bending stiffness, stent ruggedness, area residual stenosis rate, contact area fraction, and contact volume fraction. The study findings showed that the bending stiffness, stent ruggedness, area residual stenosis rate, contact area fraction and contact volume fraction increased with the fitting order's increase. Model 1 had the smallest contact area fraction and contact volume fraction, 77.63% and 83.49% respectively, in the incompletely calcified plaque environment. In the completely calcified plaque environment, these values were 72.86% and 82.21%, respectively. Additionally, it had the worst "fitness". Models 5 and 6 had similar values for stent ruggedness, with 32.15% and 32.38%, respectively, which indicated the worst "feasibility" for fabrication and implantation. Models 2, 3, and 4 had similar area residual stenosis rates in both plaque environments. In conclusion, it is more reasonable to obtain the body-fitted stent by using 2nd to 4th order fitting with the least squares method to the projected region. Among them, the body-fitted stent obtained by the 2nd order fitting performs better in the completely calcified environment.


Asunto(s)
Stents , Humanos , Diseño de Prótesis , Simulación por Computador , Placa Aterosclerótica
19.
Food Res Int ; 194: 114908, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232501

RESUMEN

Current mesh-based simulation approaches face significant challenges in continuously modeling the mechanical behaviors of foods through processing, storage, deconstruction, and digestion. This is primarily due to the limitations of continuum mechanics in dealing with systems characterized by free boundaries, substantial deformations, mechanical failures, and non-homogenized mechanical properties. The dynamic nature of food microstructure and the transformation of the food bolus, in relation to its composition, present formidable obstacles in computer-aided food design. In response, the Pizza3 project adopts an innovative methodology, utilizing an explicit microstructural representation to construct and subsequently deconstruct food products in a modular, Lego-like fashion. Central to this simulation approach are "food atoms", conceptualized from the principles of smoothed particle hydrodynamics. These units are significantly larger than actual atoms but are finely scaled to represent both solid and liquid states of food faithfully. In solid phases, food atoms interact via pairwise forces akin to bond-peridynamic methods, thus extending the capabilities of continuum mechanics to encompass large deformations and fracturing phenomena. For liquids, the model employs artificial conservative and dissipative forces, enabling the simulation of a variety of phenomena within the framework of partial compressibility. The interaction dynamics between rigid and soft objects and fluids are accurately captured through Hertzian contact mechanics, offering a versatile parameterization applicable to impermeable (but possibly penetrable) surfaces and enforcing no-slip conditions. The efficacy of this framework is showcased through the successful modeling of three time-dependent 3D scenarios, each rigorously validated against established analytical and experimental models. Advancing beyond these initial applications, the framework is further extended to more intricate cases inadequately addressed in current literature. This extension sheds light on the underlying mechanisms of in-mouth texture perception, offering new insights and tools for food engineering and design.


Asunto(s)
Simulación por Computador , Manipulación de Alimentos , Manipulación de Alimentos/métodos , Alimentos , Hidrodinámica
20.
Compr Rev Food Sci Food Saf ; 23(5): e13432, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39289792

RESUMEN

Storage is an important process involved in the postharvest treatment of grain-oilseed and is necessary for maintaining high quality and ensuring the long-term supply of these commodities in the food industry. Proper storage practices help prevent spoilage, maintain nutritional value, and preserve marketable quality. It is of great interest for storage to investigate flow, heat and mass transfer processes, and quality change for optimizing the operation parameters and ensuring the quality of grain-oilseed. This review discusses the mathematical models developed and applied to describe the physical field, biological field, and quality change during the storage of grain-oilseed. The advantages, drawbacks, and industrial relevance of the existing mathematical models were also critically evaluated, and an organic system was constructed by correlating them. Finally, the future research trends of the mathematical models toward the development of multifield coupling models based on biological fields to control quality were presented to provide a reference for further directions on the application of numerical simulations in this area. Meanwhile, artificial intelligence (AI) can greatly enhance our understanding of the coupling relationships within grain-oilseed storage. AI's strengths in both qualitative and quantitative analysis, as well as its effectiveness, make it an invaluable tool for this purpose.


Asunto(s)
Grano Comestible , Almacenamiento de Alimentos , Modelos Teóricos , Almacenamiento de Alimentos/métodos , Grano Comestible/química , Semillas/química , Inteligencia Artificial , Aceites de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA