Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evolution ; 76(8): 1689-1705, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35767747

RESUMEN

Whether and how selection can act on collectives rather than single entities has been a tumultuous issue in evolutionary biology for decades. Despite examples of multilevel selection, a simple framework is needed that makes explicit the constraints that lead to the emergence of a "group fitness function." We use evolutionary game theory to show that two constraints are sufficient for the emergence of a well-defined group fitness, which could even apply to multispecies groups. First, different parts of the group contribute to one another's growth via resources produced proportionally to the density of each resource producer (not the density of the population receiving benefits). Second, invading groups do not share these resources with resident groups. Jointly, these two constraints lead to the "entanglement" of invading individuals' outcomes such that individual fitness can no longer be defined and group fitness predicts evolutionary dynamics through the emergence of a higher level evolutionary individual. Group fitness is an emergent property, irreducible to the fitness of the group's parts and exhibiting downward causality on the parts. By formalizing group fitness as a model for evolutionary transitions in individuality, these results open up a broad class of models under the multilevel-selection framework.


Asunto(s)
Evolución Biológica , Teoría del Juego , Humanos , Selección Genética
2.
Am J Bot ; 109(1): 151-165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35025111

RESUMEN

PREMISE: Although maintaining the appropriate mid-day timing of the diel thermogenic events of cones of the dioecious cycads Macrozamia lucida and M. macleayi is central to the survival of both plant and pollinator in this obligate pollination mutualism, the nature of the underlying mechanism remains obscure. We investigated whether it is under circadian control. Circadian mechanisms control the timing of many ecologically important processes in angiosperms, yet only a few gymnosperms have been studied in this regard. METHODS: We subjected cones to different ambient temperature and lighting regimens (constant temperature and darkness; stepwise cool/warm ambient temperatures in constant darkness; stepwise dark/light exposures at constant temperature) to determine whether the resulting timing of their thermogenic events was consistent with circadian control. RESULTS: Cones exposed to constant ambient temperature and darkness generated multiple temperature peaks endogenously, with an average interpeak-temperature period of 20.7 (±0.20) h that is temperature-compensated (Q10 = 1.02). Exposure to 24-h ambient temperature cycles (12 h cool/12 h warm, constant darkness) yielded an interpeak-temperature period of 24.0 (±0.05) h, accurately and precisely replicating the ambient temperature period. Exposure to 24-h photo-cycles (12 h light/12 h dark, constant ambient temperature) yielded a shorter, more variable interpeak-temperature period of 23 (±0.23) h. CONCLUSIONS: Our results indicate that cycad cone thermogenesis is under circadian clock control and differentially affected by ambient temperature and light cycles. Our data from cycads (an ancient gymnosperm lineage) adds to what little is known about circadian timing in gymnosperms, which have rarely been studied from the circadian perspective.


Asunto(s)
Cycadopsida , Zamiaceae , Ritmo Circadiano , Luz , Polinización , Temperatura , Termogénesis
3.
Evolution ; 75(2): 219-230, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33368192

RESUMEN

Understanding how mutualisms persist over time requires investigations of how mutualist species coevolve and adapt to the interaction. In particular, the key factors in the evolution of mutualisms are the costs and benefits mutualists experience during the interaction. Here, we used a yeast nutritional mutualism to test how mutualists coevolve and adapt in an obligate mutualism. We allowed two yeast mutualists to evolve together for 15 weeks (about 150 generations), and then we tested if the mutualists had coevolved using time-shift assays. We also examined two mutualistic traits associated with the costs and benefits: resource use efficiency and commodity production. We found that the mutualists quickly coevolved. Furthermore, the changes in benefits and costs were nonlinear and varied with evolutionary changes occurring in the mutualist partner. One mutualist initially evolved to reduce mutualistic commodity production and increase efficiency in mutualistic resource use; however, this negatively affected its mutualist partner that evolved reduced commodity production and resource use efficiency. As a result, the former increased commodity production, resulting in an increase in benefits for its partner. The quick, nonlinear, and asynchronous evolution of yeast mutualists closely resembles antagonistic coevolutionary patterns, supporting the view that mutualisms should be considered as reciprocal exploitation.


Asunto(s)
Coevolución Biológica , Simbiosis , Modelos Estadísticos , Factores de Tiempo , Levaduras
4.
Evolution ; 73(11): 2295-2311, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31339553

RESUMEN

The fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one-to-one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome-wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction. Using a model-based approach adapted from the study of gene family evolution, our results demonstrate the importance of host switching of pollinator wasps at this fine phylogenetic and regional scale. Although we estimate a modest amount of cospeciation, simulations reveal the number of putative cospeciation events to be consistent with what would be expected by chance. Additionally, model selection tests identify host switching as a critical parameter for explaining cophylogenetic patterns in this system. Our study demonstrates a promising approach through which the history of evolutionary association between interacting lineages can be rigorously modeled and tested in a probabilistic phylogenetic framework.


Asunto(s)
Coevolución Biológica , Ficus/genética , Variación Genética , Polinización , Avispas/genética , Animales , Ecosistema , Ficus/fisiología , Modelos Genéticos , Avispas/fisiología
5.
Bull Math Biol ; 81(11): 4803-4820, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30209744

RESUMEN

Pollination interactions are common, and their maintenance is critical for many food crops upon which human populations depend. Pollination is a mutualism interaction; together with predation and competition, mutualism makes up the triumvirate of fundamental interactions that control population dynamics. Here we examine pollination interactions (nectar reward for gamete transport service) using a simple heuristic model similar to the Lotka-Volterra models that have underpinned our understanding of predation and competition so effectively since the 1920s. We use a genetic algorithm to simulate the eco-evolutionary interactions of the plant and pollinator populations and examine the distributions of the parameter values and zero isoclines to infer the relative ubiquity of the various eco-evolutionary outcomes possible in the model. Our results suggest that trade-offs between costs and benefits for the pollinator may be a key component of obligate pollination systems in achieving adaptive success creating and stably occupying mutualist niches.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Polinización , Algoritmos , Animales , Biomasa , Simulación por Computador , Productos Agrícolas/crecimiento & desarrollo , Ecosistema , Aptitud Genética , Humanos , Conceptos Matemáticos , Modelos Genéticos , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Dinámica Poblacional , Simbiosis
6.
Yale J Biol Med ; 91(4): 375-389, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30588205

RESUMEN

The development of a theory to underpin the obligate mutualist interactions that appear to be ubiquitous in nature has not proceeded at the same pace as the development of theory to support competition and predation. A constraint may be that obligate mutualism appears unable to be presented in the simple linear models that have so successfully served as heuristics for the other interactions. A number of simple nonlinear models have been used to propose explanations of obligate mutualism, but these solutions are often predicated on careful choices of functional forms. We present a theory of obligate mutualism in an explicit mass-conserving framework using simple models that are robust to choices of functional forms.


Asunto(s)
Simbiosis , Modelos Lineales , Modelos Biológicos
7.
Front Plant Sci ; 9: 1076, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087690

RESUMEN

Plants in more than 100 families secrete extrafloral nectar (EFN) to establish food-for-protection mutualisms with ants. Facultative ant-plants secrete EFN as a jasmonic acid (JA)-dependent response to attract generalist ants. In contrast, obligate ant-plants like the Central American "Swollen-Thorn Acacias" are colonized by specialized ants, although an individual host can carry ant colonies from different species that differ in the degree of protection they provide. We hypothesized that hosts that associate simultaneously with various partners should produce rewards in a modular manner to preferentially reward high quality partners. To test this hypothesis, we applied JA to distinct leaves and quantified cell wall invertase activity (CWIN; a regulator of nectar secretion) and EFN secretion by these "local" (i.e., treated) and the "systemic" (i.e., non-treated) leaves of the same branch. Both CWIN activity and EFN secretion increased in local and systemic leaves of the facultative ant-plant Acacia cochliacantha, but only in the local leaves of the obligate ant-plant, A. cornigera. The systemic EFN secretion in A. cochliacantha was associated with an enhanced emission of volatile organic compounds (VOCs). Such VOCs function as "external signals" that control systemic defense responses in diverse plant species. Indeed, the headspace of JA-treated branches of A. cochliacantha induced EFN secretion in both plant species, whereas the headspace of A. cornigera caused no detectable induction effect. Analyses of the headspace using GC-MS identified six VOCs in the headspace of A. cochliacantha that were not emitted by A. cornigera. Among these VOCs, ß-caryophyllene and (cis)-hexenyl isovalerate have already been reported in other plant species to induce defense traits, including EFN secretion. Our observations underline the importance of VOCs as systemic within-plant signals and show that the modular rewarding in A. cornigera is likely to result from a reduced emission of the systemic signal, rather than from a reduced responsiveness to the signal. We suggest that modular rewarding allows hosts to restrict the metabolic investment to specific partners and to efficiently sanction potential exploiters.

8.
Am J Bot ; 103(10): 1717-1729, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27793858

RESUMEN

PREMISE OF THE STUDY: Yucca species are ideal candidates for the study of coevolution due to the obligate mutualism they form with yucca moth pollinators (genera Tegeticula and Parategeticula). Yuccas are not the only species to exhibit a mutualism with yucca moths; the genus Hesperoyucca is pollinated by the California yucca moth (Tegeticula maculata). Relationships among yuccas, Hesperoyucca, and other members of subfamily Agavoideae are necessary to understand the evolution of this unique pollination syndrome. Here, we investigate evolutionary relationships of yuccas and closely related genera looking at the timing and origin of yucca moth pollination. METHODS: In this study, we sequenced the chloroplast genomes of 20 species in the subfamily Agavoideae (Asparagaceae) and three confamilial outgroup taxa to resolve intergeneric phylogenetic relationships of Agavoideae. We estimated divergence times using protein-coding genes from 67 chloroplast genomes sampled across monocots to determine the timing of the yucca moth pollination origin. KEY RESULTS: We confidently resolved intergeneric relationships in Agavoideae, demonstrating the origin of the yucca-yucca moth mutualism on two distinct lineages that diverged 27 million years ago. Comparisons of Yucca and Hesperoyucca divergence time to those of yucca moths (Tegeticula and Parategeticula, Prodoxidae) indicate overlapping ages for the origin of pollinating behavior in the moths and pollination by yucca moths in the two plant lineages. CONCLUSION: Whereas pollinating yucca moths have been shown to have a single origin within the Prodoxidae, there were independent acquisitions of active pollination on lineages leading to Yucca and Hesperoyucca within the Agavoideae.


Asunto(s)
Asparagaceae/fisiología , Biodiversidad , Evolución Biológica , Genoma del Cloroplasto/genética , Mariposas Nocturnas/fisiología , Polinización , Simbiosis , Animales , Asparagaceae/genética , Evolución Molecular , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN , Yucca/genética , Yucca/fisiología
9.
ACS Synth Biol ; 5(7): 569-76, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26885935

RESUMEN

Synthetic microbial ecology has the potential to enhance the productivity and resiliency of biotechnology processes compared to approaches using single isolates. Engineering microbial consortia is challenging; however, one approach that has attracted significant attention is the creation of synthetic obligate mutualism using auxotrophic mutants that depend on each other for exchange or cross-feeding of metabolites. Here, we describe the integration of mutant library fitness profiling with mass spectrometry based exometabolomics as a method for constructing synthetic mutualism based on cross-feeding. Two industrially important species lacking known ecological interactions, Zymomonas mobilis and Escherichia coli, were selected as the test species. Amino acid exometabolites identified in the spent medium of Z. mobilis were used to select three corresponding E. coli auxotrophs (proA, pheA and IlvA), as potential E. coli counterparts for the coculture. A pooled mutant fitness assay with a Z. mobilis transposon mutant library was used to identify mutants with improved growth in the presence of E. coli. An auxotroph mutant in a gene (ZMO0748) with sequence similarity to cysteine synthase A (cysK), was selected as the Z. mobilis counterpart for the coculture. Exometabolomic analysis of spent E. coli medium identified glutathione related metabolites as potentially available for rescue of the Z. mobilis cysteine synthase mutant. Three sets of cocultures between the Z. mobilis auxotroph and each of the three E. coli auxotrophs were monitored by optical density for growth and analyzed by flow cytometry to confirm high cell counts for each species. Taken together, our methods provide a technological framework for creating synthetic mutualisms combining existing screening based methods and exometabolomics for both the selection of obligate mutualism partners and elucidation of metabolites involved in auxotroph rescue.


Asunto(s)
Escherichia coli/fisiología , Metabolómica/métodos , Simbiosis , Biología Sintética/métodos , Zymomonas/fisiología , Aminoácidos/metabolismo , Técnicas de Cocultivo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Consorcios Microbianos/fisiología , Mutación , Reproducibilidad de los Resultados , Zymomonas/metabolismo
10.
Am J Bot ; 101(12): 2062-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25480703

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: According to Cope's 'law of the unspecialized' highly dependent species interactions are 'evolutionary dead ends,' prone to extinction because reversion to more generalist interactions is thought to be unlikely. Cases of extreme specialization, such as those seen between obligate mutualists, are cast as evolutionarily inescapable, inevitably leading to extinction rather than diversification of participating species. The pollination mutualism between Yucca plants and yucca moths (Tegeticula and Parategeticula) would seem to be locked into such an obligate mutualism. Yucca aloifolia populations, however, can produce large numbers of fruit lacking moth oviposition scars. Here, we investigate the pollination ecology of Y. aloifolia, in search of the non-moth pollination of a Yucca species.• METHODS: We perform pollinator exclusion studies on Yucca aloifolia and a sympatric yucca species, Y. filamentosa. We then perform postvisit exclusion treatments, an analysis of dissected fruits, and a fluorescent dye transfer experiment.• KEY RESULTS: As expected, Yucca filamentosa plants set fruit only when inflorescences were exposed to crepuscular and nocturnal pollinating yucca moths. In contrast, good fruit set was observed when pollinators were excluded from Y. aloifolia inflorescences from dusk to dawn, and no fruit set was observed when pollinators were excluded during the day. Follow up experiments indicated that European honeybees (Apis mellifera) were passively yet effectively pollinating Y. aloifolia flowers.• CONCLUSIONS: These results indicate that even highly specialized mutualisms may not be entirely obligate interactions or evolutionary dead ends.


Asunto(s)
Evolución Biológica , Mariposas Nocturnas , Polinización/genética , Simbiosis/genética , Yucca/genética , Animales , Abejas , Flores , Frutas , Filogenia , Reproducción/genética , Especificidad de la Especie , Yucca/fisiología
11.
Am Nat ; 156(S4): S62-S76, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29592582

RESUMEN

Species interactions are a major source of adaptive radiation. In mutualisms, such diversification can take the form of evolution of parasites that exploit the resources needed for maintenance of the mutualism. Mutualistic associations often have associated parasitic species, and in some cases, parasitic species have indeed evolved from the mutualists. For example, obligate mutualisms, such as those involving seed-eating pollinators, have on a few occasions given rise to nonmutualist species. These systems are relatively simple and provide models for identifying factors that facilitate the stable reversal of a mutualistic interaction. We used ecological data in a phylogenetic framework to analyze the origins of two nonmutualist cheater yucca moths. Phylogenetic analysis suggests that the evolution of cheating may be preceded by a change in oviposition behavior. Two different modes of oviposition among moth species cause density-dependent moth egg mortality through flower abscission in one case (locule-ovipositing species) but density-independent mortality in the other (superficially ovipositing species). A mtDNA-based phylogeny indicated that cheating and superficial oviposition have evolved twice each and that the cheater clades are sisters to the superficially ovipositing species clades. Consideration of the fitness consequences of two trait changes-loss of pollination and phenological delay in oviposition-in which cheaters have diverged from ancestral pollinators suggest that the shift to oviposition into fruit may have occurred first and that loss of pollination behavior was a secondary event. We suggest that secondary coexistence of two pollinator species of opposite oviposition modes may facilitate the shift to fruit oviposition and cheating and that this is applicable in the best documented of the cheater yucca moths. Superficially ovipositing species suffer dual sources of egg mortality when in coexistence with locule-ovipositing species. Shift to fruit oviposition under this circumstance can be facilitated by access to a seed resource not available to the copollinator, preadaptations in ovipositor morphology, and pollinator phenology late relative to the copollinator. Thus the adaptive radiation of nonmutualists from mutualists may have taken place in specific ecological contexts through few trait changes, and the reversal of mutualism would be a by-product of a shift to reliance on a previously inaccessible seed resource.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA