Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 13(6): 1737-1749, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38845097

RESUMEN

Genome editing is the basis for the modification of engineered microbes. In the process of genome editing, the design of editing sequences, such as primers and sgRNA, is very important for the accurate positioning of editing sites and efficient sequence editing. The whole process of genome editing involves multiple rounds and types of editing sequence design, while the development of related whole-workflow design tools for high-throughput experimental requirements lags. Here, we propose AutoESDCas, an online tool for the end-to-end editing sequence design for microbial genome editing based on the CRISPR/Cas system. This tool facilitates all types of genetic manipulation covering diverse experimental requirements and design scenarios, enables biologists to quickly and efficiently obtain all editing sequences needed for the entire genome editing process, and empowers high-throughput strain modification. Notably, with its off-target risk assessment function for editing sequences, the usability of the design results is significantly improved. AutoESDCas is freely available at https://autoesdcas.biodesign.ac.cn/with the source code at https://github.com/tibbdc/AutoESDCas/.


Asunto(s)
Sistemas CRISPR-Cas , Internet , Programas Informáticos , Sistemas CRISPR-Cas/genética , Genoma Microbiano/genética , Edición Génica/métodos
2.
Plant Biotechnol J ; 22(9): 2488-2503, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38713743

RESUMEN

CRISPR-Cas9 is widely used for genome editing, but its PAM sequence requirements limit its efficiency. In this study, we explore Faecalibaculum rodentium Cas9 (FrCas9) for plant genome editing, especially in rice. FrCas9 recognizes a concise 5'-NNTA-3' PAM, targeting more abundant palindromic TA sites in plant genomes than the 5'-NGG-3' PAM sites of the most popular SpCas9. FrCas9 shows cleavage activities at all tested 5'-NNTA-3' PAM sites with editing outcomes sharing the same characteristics of a typical CRISPR-Cas9 system. FrCas9 induces high-efficiency targeted mutagenesis in stable rice lines, readily generating biallelic mutants with expected phenotypes. We augment FrCas9's ability to generate larger deletions through fusion with the exonuclease, TREX2. TREX2-FrCas9 generates much larger deletions than FrCas9 without compromise in editing efficiency. We demonstrate TREX2-FrCas9 as an efficient tool for genetic knockout of a microRNA gene. Furthermore, FrCas9-derived cytosine base editors (CBEs) and adenine base editors (ABE) are developed to produce targeted C-to-T and A-to-G base edits in rice plants. Whole-genome sequencing-based off-target analysis suggests that FrCas9 is a highly specific nuclease. Expression of TREX2-FrCas9 in plants, however, causes detectable guide RNA-independent off-target mutations, mostly as single nucleotide variants (SNVs). Together, we have established an efficient CRISPR-FrCas9 system for targeted mutagenesis, large deletions, C-to-T base editing, and A-to-G base editing in plants. The simple palindromic TA motif in the PAM makes the CRISPR-FrCas9 system a promising tool for genome editing in plants with an expanded targeting scope.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Oryza , Edición Génica/métodos , Genoma de Planta/genética , Oryza/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética
3.
Front Mol Biosci ; 10: 1243970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881441

RESUMEN

Several platforms exist to perform molecular docking to computationally predict binders to a specific protein target from a library of ligands. The reverse, that is, docking a single ligand to various protein targets, can currently be done by very few web servers, which limits the search to a small set of pre-selected human proteins. However, the possibility to in silico predict which targets a compound identified in a high-throughput drug screen bind would help optimize and reduce the costs of the experimental workflow needed to reveal the molecular mechanism of action of a ligand. Here, we present ReverseDock, a blind docking web server based on AutoDock Vina specifically designed to allow users with no computational expertise to dock a ligand to 100 protein structures of their choice. ReverseDock increases the number and type of proteins a ligand can be docked to, making the task of in silico docking of a ligand to entire families of proteins straightforward. We envision ReverseDock will support researchers by providing the possibility to apply inverse docking computations using web browser. ReverseDock is available at: https://reversedock.biologie.uni-freiburg.de/.

4.
Front Oncol ; 12: 834002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35449580

RESUMEN

Antitumor activity of immune cells such as T cells and NK cells has made them auspicious therapeutic regimens for adaptive cancer immunotherapy. Enhancing their cytotoxic effects against malignancies and overcoming their suppression in tumor microenvironment (TME) may improve their efficacy to treat cancers. Clustered, regularly interspaced short palindromic repeats (CRISPR) genome editing has become one of the most popular tools to enhance immune cell antitumor activity. In this review we highlight applications and practicability of CRISPR/Cas9 gene editing and engineering strategies for cancer immunotherapy. In addition, we have reviewed several approaches to study CRISPR off-target effects.

5.
Elife ; 102021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100716

RESUMEN

A missense mutation of collagen type VIII alpha 2 chain (COL8A2) gene leads to early-onset Fuchs' endothelial corneal dystrophy (FECD), which progressively impairs vision through the loss of corneal endothelial cells. We demonstrate that CRISPR/Cas9-based postnatal gene editing achieves structural and functional rescue in a mouse model of FECD. A single intraocular injection of an adenovirus encoding both the Cas9 gene and guide RNA (Ad-Cas9-Col8a2gRNA) efficiently knocked down mutant COL8A2 expression in corneal endothelial cells, prevented endothelial cell loss, and rescued corneal endothelium pumping function in adult Col8a2 mutant mice. There were no adverse sequelae on histology or electroretinography. Col8a2 start codon disruption represents a non-surgical strategy to prevent vision loss in early-onset FECD. As this demonstrates the ability of Ad-Cas9-gRNA to restore the phenotype in adult post-mitotic cells, this method may be widely applicable to adult-onset diseases, even in tissues affected with disorders of non-reproducing cells.


Asunto(s)
Sistemas CRISPR-Cas/genética , Codón Iniciador/genética , Distrofia Endotelial de Fuchs , Edición Génica/métodos , Animales , Colágeno Tipo VIII/genética , Modelos Animales de Enfermedad , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Guía de Kinetoplastida/genética
6.
Mol Ther Methods Clin Dev ; 21: 478-491, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33981780

RESUMEN

CRISPR systems enable targeted genome editing in a wide variety of organisms by introducing single- or double-strand DNA breaks, which are repaired using endogenous molecular pathways. Characterization of on- and off-target editing events from CRISPR proteins can be evaluated using targeted genome resequencing. We characterized DNA repair fingerprints that result from non-homologous end joining (NHEJ) after double-stranded breaks (DSBs) were introduced by Cas9 or Cas12a for >500 paired treatment/control experiments. We found that building biological understanding of the repair into a novel analysis tool (CRISPAltRations) improved the quality of the results. We validated our software using simulated, targeted amplicon sequencing data (11 guide RNAs [gRNAs] and 603 on- and off-target locations) and demonstrated that CRISPAltRations outperforms other publicly available software tools in accurately annotating CRISPR-associated indels and homology-directed repair (HDR) events. We enable non-bioinformaticians to use CRISPAltRations by developing a web-accessible, cloud-hosted deployment, which allows rapid batch processing of samples in a graphical user interface (GUI) and complies with HIPAA security standards. By ensuring that our software is thoroughly tested, version controlled, and supported with a user interface (UI), we enable resequencing analysis of CRISPR genome editing experiments to researchers no matter their skill in bioinformatics.

7.
Methods Mol Biol ; 2189: 71-80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33180294

RESUMEN

With the advent of genome editing technologies, scientists have recognized that these technologies can be prone to nonspecific or off-target activity. As many areas of the genome are sensitive and can give rise to abnormalities if mutated, it is imperative that scientists identify regions of off-target activity in order to utilize these new technologies for medical benefits. GUIDE-seq and iGUIDE both use an oligo-based marker method to identify regions of DNA double-strand breaks in an unbiased manner. The repeated observation of these double-strand breaks across the genome in comparison with target sequences (such as guide RNAs) has allowed researchers to identify on- and off-target sites related to their targeted-nuclease technologies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Kinetoplastida/genética , Análisis de Secuencia de ADN , Roturas del ADN de Doble Cadena , Humanos
8.
AIDS Res Hum Retroviruses ; 36(10): 862-874, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640832

RESUMEN

Gene editing approaches using CRISPR/Cas9 are being developed as a means for targeting the integrated HIV-1 provirus. Enthusiasm for the use of gene editing as an anti-HIV-1 therapeutic has been tempered by concerns about the specificity and efficacy of this approach. Guide RNAs (gRNAs) that target conserved sequences across a wide range of genetically diverse HIV-1 isolates will have greater clinical utility. However, on-target efficacy should be considered in the context of off-target cleavage events as these may comprise an essential safety parameter for CRISPR-based therapeutics. We analyzed a panel of Streptococcus pyogenes Cas9 (SpCas9) gRNAs directed to the 5' and 3' long terminal repeat (LTR) regions of HIV-1. We used in vitro cleavage assays with genetically diverse HIV-1 LTR sequences to determine gRNA activity across HIV-1 clades. Lipid-based transfection of gRNA/Cas9 ribonucleoproteins was used to assess targeting of the integrated HIV-1 proviral sequence in cells (in vivo). For both the in vitro and in vivo experiments, we observed increased efficiency of sequence disruption through the simultaneous use of two distinct gRNAs. Next, CIRCLE-Seq was utilized to identify off-target cleavage events using genomic DNA from cells with integrated HIV-1 proviral DNA. We identified a gRNA targeting the U3 region of the LTR (termed SpCas9-127HBX2) with broad cleavage efficiency against sequences from genetically diverse HIV-1 strains. Based on these results, we propose a workflow for identification and development of anti-HIV CRISPR therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Sistemas CRISPR-Cas , Edición Génica , Infecciones por VIH/genética , VIH-1/genética , Humanos , ARN Guía de Kinetoplastida/genética
9.
Mol Cell ; 78(4): 794-800.e8, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32187529

RESUMEN

Determining the off-target cleavage profile of programmable nucleases is an important consideration for any genome editing experiment, and a number of Cas9 variants have been reported that improve specificity. We describe here tagmentation-based tag integration site sequencing (TTISS), an efficient, scalable method for analyzing double-strand breaks (DSBs) that we apply in parallel to eight Cas9 variants across 59 targets. Additionally, we generated thousands of other Cas9 variants and screened for variants with enhanced specificity and activity, identifying LZ3 Cas9, a high specificity variant with a unique +1 insertion profile. This comprehensive comparison reveals a general trade-off between Cas9 activity and specificity and provides information about the frequency of generation of +1 insertions, which has implications for correcting frameshift mutations.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Edición Génica , Variación Genética , ARN Guía de Kinetoplastida/genética , Proteína 9 Asociada a CRISPR/metabolismo , Células HEK293 , Humanos , Células K562
10.
Cell Stem Cell ; 26(4): 503-510.e7, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32084388

RESUMEN

Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fibrosis Quística , Adenina , Bancos de Muestras Biológicas , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Codón sin Sentido , Fibrosis Quística/genética , Edición Génica , Humanos , Organoides/metabolismo
11.
Methods Mol Biol ; 1498: 41-56, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27709568

RESUMEN

CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Humano/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/genética , Línea Celular Tumoral , Endonucleasas/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética , Células Hep G2 , Humanos , Mutación/genética , ARN Guía de Kinetoplastida/genética , Transfección/métodos
12.
Biotechnol Adv ; 35(1): 95-104, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28011075

RESUMEN

The development of customizable sequence-specific nucleases such as TALENs, ZFNs and the powerful CRISPR/Cas9 system has revolutionized the field of genome editing. The CRISPR/Cas9 system is particularly versatile and has been applied in numerous species representing all branches of life. Regardless of the target organism, all researchers using sequence-specific nucleases face similar challenges: confirmation of the desired on-target mutation and the detection of off-target events. Here, we evaluate the most widely-used methods for the detection of on-target and off-target mutations in terms of workflow, sensitivity, strengths and weaknesses.


Asunto(s)
Sistemas CRISPR-Cas/genética , Desoxirribonucleasas , Edición Génica/métodos , Mutación/genética , Animales , Secuencia de Bases , Línea Celular , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Humanos , Ratones
13.
Metab Eng ; 28: 213-222, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25638686

RESUMEN

CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoid biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería Genética/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA