Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.255
Filtrar
1.
Biosens Bioelectron ; 267: 116740, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244837

RESUMEN

Klebsiella pneumoniae poses a significant threat to global public health. Traditional clinical diagnostic methods, such as bacterial culture and microscopic identification, are not suitable for point-of-care testing. In response, based on the suboptimal protospacer adjacent motifs, this study develops an extraction-free one-pot assay, named EXORCA (EXtraction-free One-pot RPA-CRISPR/Cas12a assay), designed for the immediate, sensitive and efficient detection of K. pneumoniae. The EXORCA assay can be completed within approximately 30 min at a constant temperature and allows for the visualization of results either through a fluorescence reader or directly by the naked eye under blue light. The feasibility of the assay was evaluated using twenty unextracted clinical samples, achieving a 100% (5/5) positive predictive value and a 100% (15/15) negative predictive value in comparison to qPCR. These results suggest that the EXORCA assay holds significant potential as a point-of-care testing tool for the rapid identification of pathogens, such as K. pneumonia.

2.
Beilstein J Org Chem ; 20: 1831-1838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109299

RESUMEN

Functionalized 5-aryldeazaalloxazines have been successfully synthesised through a one-pot, three-component reaction involving N,N-dimethylbarbituric acid, an aromatic aldehyde and aniline. By utilizing readily available reagents, this approach opens up the opportunity for the efficient formation of a variety of 5-aryldeazaalloxazines bearing electron-donating or halogen groups. This practical method is characterised by atom economy and offers a direct route to the introduction of an aryl moiety into the C(5)-position of deazaalloxazines, thereby generating novel catalysts for photoredox catalysis without the need for subsequent purification. Thus, it significantly improves existing approaches.

3.
Trends Biotechnol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095257

RESUMEN

The integration of nucleic acid amplification (NAA) with the CRISPR detection system has led to significant advancements and opportunities for development in molecular diagnostics. Nevertheless, the incompatibility between CRISPR cleavage and NAA has significantly impeded the commercialization of this technology. Currently, several one-pot detection strategies based on CRISPR systems have been devised to address concerns regarding aerosol contamination risk and operational complexity associated with step-by-step detection as well as the sensitivity limitation of conventional one-pot methods. In this review, we provide a comprehensive introduction and outlook of the various solutions of the one-pot CRISPR assay for practitioners who are committed to developing better CRISPR nucleic acid detection technologies to promote the progress of molecular diagnostics.

4.
Chempluschem ; : e202400219, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126688

RESUMEN

Copper catalyzed intramolecular annulation of 2-((2benzylidene-1-phenylhydrazineyl)methyl)pyridine derivatives was described. It was found that Cu(II) is reduced under the reaction condition to Cu(I). Synthesized 1, 2-dihydro [1,2,4] triazinium salt showed fluorescence activity in solid state. On treating with base, an instant increase in fluorescence was observed. A detailed physicochemical assessment underscored the robust DNA-binding prowess of the [1,2,4] triazinium cationic species (C1-C3) via intercalative mechanisms. Notably, binding assays with BSA accentuated the heightened nucleic acid affinity of these cationic species.

5.
Food Chem ; 460(Pt 3): 140754, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121762

RESUMEN

The determination of biogenic amines (BAs) in alcoholic beverages is crucial for assessing their health impact, ensuring beverage quality, and guaranteeing safety. Herein, a rapid one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method was proposed using 6-aminoquinolinyl-N-hydroxysuccinimide carbamate as the derivatization reagent and magnetic hydroxyl-functionalized multi-walled carbon nanotubes as the extraction material. Integration of derivatization and extraction steps simplifies the sample preparation process, taking only three minutes and eliminating the need for centrifugation by utilizing magnetic sorbent. The resulting desorption solution was directly analyzed by high-performance liquid chromatography-fluorescence detection (HPLC-FLD) without any evaporation or reconstitution steps. The integrated OPD/MSPE-HPLC-FLD method demonstrates excellent linearity (R2 > 0.992), accuracy (relative recoveries: 85.1-109.2%), precision (RSDs≤9.7%) and detection limits (limits of detection: 0.3-2 ng/mL). It has been successfully applied to determine free BAs in various alcoholic beverages, including red wine, Baijiu, Huangjiu, and beer. This method enables rapid, sensitive and precise analysis of BAs in alcoholic beverages.


Asunto(s)
Bebidas Alcohólicas , Aminas Biogénicas , Extracción en Fase Sólida , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión , Bebidas Alcohólicas/análisis , Aminas Biogénicas/análisis , Aminas Biogénicas/aislamiento & purificación , Límite de Detección , Fluorescencia
6.
Chemistry ; : e202402696, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190899

RESUMEN

Electrochemical transformations are considered a green alternative to classical redox chemistry as it eliminates the necessity for toxic and waste producing redox reagents. Typical electrochemical reactions require the addition of a so-called supporting electrolyte - a salt bridge - and other additives, such as hexafluorisopropanol, to enhance conductivity and reaction outcomes, respectively. However, this is often accompanied by an increase in the amount of produced waste. Here, we report an "in-situ electrolyte" concept for facile, transition-metal-free, additive-free one-pot electrochemical preparation of isoxazol(in)es, important scaffolds for biologically active natural and synthetic molecules, from the respective aldehydes. The protocol utilizes no halogenated solvents and no external oxidants, while salt side-products provide the ionic conductivity necessary for the electrosynthesis. The electrolysis is performed in an undivided cell, using the state-of-the-art electrodes for the chlor-alkali industry dimensionally stable and scalable mixed metal oxide anode and platinized titanium anode of high durability. The cascade transformation comprises the condensation of aldehyde to oxime followed by its anodic oxidation and subsequent intra- and/or intermolecular [3+2] cycloadditions with an appropriate dipolarophile. Chemical yields up to 97%, and good Faradaic efficiency, scalability, and stability are observed for most substrates in a broad scope.

7.
Chemistry ; : e202402806, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180461

RESUMEN

Tunable luminescence-assisted information storage and encryption holds increasing significance in today's society. A promising approach to incorporating the benefits of both organic long persistent luminescent (LPL) materials and rare-earth (RE) luminescence lies in utilizing organic host materials to sensitize RE luminescence, as well as hydrogen-bonded organic framework (HOF) phosphorescence Förster resonance energy transfer to RE compound luminescence. This work introduces a one-pot, in situ pyrolytic condensation method, achieved through high-temperature melting calcination, to synthesize lanthanide ion-doped HOF materials. This method circumvents the drawback of molecular triplet energy annihilation, enabling the creation of organic LPL materials with RE characteristics. The HOF material serves as the host, exhibiting blue phosphorescence and cyan LPL. By fine-tuning the doping amount, the composite material U-Tb-100 achieves green LPL with a luminescent quantum yield of 56.4%, and an LPL duration of approximately 2-3 s, demonstrating tunable persistence. Single-crystal X-ray diffraction, spectral analysis, and theoretical calculation unveil that U-Tb-100 exhibits exceptional quantum yield and long-lived luminescence primarily due to the efficient sensitization of U monomer to RE ions and the PRET process between U and RE complexes. This ingenious strategy not only expands the repertoire of HOF materials but also facilitates the design of multifunctional LPL materials.

8.
Biosens Bioelectron ; 263: 116636, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116631

RESUMEN

The clinical diagnosis of pathogen infectious diseases increasingly requires sensitive and rapid RNA detection technologies. The RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system has shown immense potential in molecular diagnostics due to its trans-cleavage activity. However, most Cas13a-based detection methods require an amplicon transcription step, and the multi-step open-tube operations are prone to contamination, limiting their widespread application. Here, we propose an ultrasensitive (single-copy range, ∼aM) and rapid (within 40 min) isothermal one-pot RNA detection platform, termed SATCAS (Simultaneous Amplification and Testing platform based on Cas13a). This method effectively distinguishes viable bacteria (0%-100%) under constant total bacterial conditions, demonstrating its robustness and universality. SATCAS excels in identifying single nucleotide polymorphisms (SNPs), particularly detecting 0.5% drug-resistant mutations. We validated SATCAS by detecting infections in biological samples from 68 HBV, 23 EBV, and 48 SARS-CoV-2 patients, achieving 100% sensitivity, 92.86% specificity, and 97.06% accuracy in HBV infection testing. We anticipate that SATCAS has broad application potential in the early diagnosis, subtyping, drug resistance detection, and point-of-care monitoring of pathogen infectious diseases.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , SARS-CoV-2 , Humanos , Técnicas Biosensibles/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , COVID-19/diagnóstico , COVID-19/virología , ARN Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación
9.
Trends Biotechnol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214790

RESUMEN

One-pot enzymatic synthesis is flourishing in synthetic chemistry, heralding a sustainable and green era. Recent advancements enable the creation of complex enzymatic prosthetic groups and regeneration of enzymatic cofactors such as S-adenosylmethionine. The next frontier is to develop the effective and innovative cofactors for essential micronutrients, metabolic modulators, and biomedicines.

10.
Molecules ; 29(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39203040

RESUMEN

The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, a series of low-cost Ni-W bimetallic catalysts supported on glucose/carbon nanotube hybrid carbons were synthesised for the first time and employed to transform cellulose into EG. Two different strategies were combined for the preparation of the carbons: the activation and addition of carbon nanotubes (CNTs) to obtain a hybrid material (AG-CNT). The catalytic conversion process proceeded through cellulose hydrolysis to glucose, followed by glucose retro-aldol condensation to glycolaldehyde and its subsequent hydrogenation to EG. Through the optimisation of the catalyst's properties, particularly the metals' content, a good synergistic effect of C-C bond cleavage and hydrogenation capabilities was assured, resulting in the highly selective production of EG. The balance between Ni and W active sites was confirmed to be a crucial parameter. Thus, total cellulose conversion (100%) was achieved with EG yields of 60-62%, which are amongst the best yields ever reported for the catalytic conversion of cellulose into EG via carbon-supported catalysts.

11.
Small ; : e2405540, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205545

RESUMEN

The establishment of reticular chemistry has significantly facilitated the development of porous materials, especially for metal-organic frameworks (MOFs). On the other hand, as an alternative approach, in situ "one-pot" strategy has been explored as a promising approach to constructing MOFs, in which the synthesis of organic linkers and the sequential construction of MOFs are integrated into one solvothermal condition. This strategy can efficiently avoid the limitations faced in the traditional construction method, such as time-consuming organic synthesis and multiple separation and purification. Herein, inspired by the reaction of aldehydes and o-phenylenediamine and deep structural analysis of UiO-68, a series of tetra-, hexa-, and octa-topic carboxylic acids are synthesized using 2',3'-diamino-[1,1':4',1'"-terphenyl]-4,4'"-dicarboxylic acid and di-, tri-, and tetra-topic aldehydes as precursor. Then nine multicarboxylate-based zirconium MOFs (Zr-MOFs) are successfully constructed via the combination of reticular chemistry and in situ "one-pot" strategy. The resultant Zr-MOFs can be regarded as the partial face decoration of UiO-68. More importantly, the emission properties of resultant Zr-MOFs can be well controlled using aldehydes with tunable electronic structures. This work provides a new path to rational design and construction of porous materials with specific structures guided by reticular chemistry and conducted using in situ "one-pot" strategy.

12.
Front Pharmacol ; 15: 1429286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206265

RESUMEN

Background: CYP2D6 testing is increasingly used to guide drug therapy and thus, reliable methods are needed to test this complex and polymorphic gene locus. A particular challenge arises from the detection and interpretation of structural variants (SVs) including gene deletions, duplications, and hybrids with the CYP2D7 pseudogene. This study validated the Absolute Q™ platform for digital PCR-based CYP2D6 copy number variation (CNV) determination by comparing results to those obtained with a previously established method using the QX200 platform. In addition, protocols for streamlining CYP2D6 CNV testing were established and validated including the "One-pot" single-step restriction enzyme digestion and a multiplex assay simultaneously targeting the CYP2D6 5'UTR, intron 6, and exon 9 regions. Methods: Genomic DNA (gDNA) samples from Coriell (n = 13) and from blood, saliva, and liver tissue (n = 17) representing 0-6 copies were tested on the Absolute Q and QX200 platforms. Custom TaqMan™ copy number (CN) assays targeting CYP2D6 the 5'UTR, intron 6, and exon 9 regions and a reference gene assay (TERT or RNaseP) were combined for multiplexing by optical channel. In addition, two digestion methods (One-pot digestion and traditional) were assessed. Inconclusive CN values on the Absolute Q were resolved using an alternate reference gene and/or diluting gDNA. Results: Overall, results between the two platforms and digestions methods were consistent. The "One-pot" digestion method and optically multiplexing up to three CYP2D6 regions yielded consistent result across DNA sample types and diverse SVs, reliably detecting up to 6 gene copies. Rare variation in reference genes were found to interfere with results and interpretation, which were resolved by using a different reference. Conclusion: The Absolute Q produced accurate and reliable CYP2D6 copy number results allowing for a streamlined and economical protocol using One-pot digestion and multiplexing three target regions. Protocols are currently being expanded to other pharmacogenes presenting with SVs/CNVs.

13.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2666-2677, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174475

RESUMEN

Itaconic acid (IA) is one of the twelve high value-added platform compounds applied in various fields including coatings, adhesives, plastics, resins, and biofuels. In this study, we established a one-pot catalytic synthesis system for IA from citric acid based on the engineered salt-tolerant bacterial strain Halomonas bluephagenesis TDZI-08 after investigating factors that hindered the process and optimizing the carbon source, nitrogen source, inducer addition time, and surfactant dosage. The open, non-sterile, one-pot synthesis with TDZI-08 in a 5 L fermenter achieved the highest IA titer of 40.50 g/L, with a catalytic yield of 0.68 g IA/g citric acid during the catalytic stage and a total yield of 0.42 g IA/g (citric acid+gluconic acid). The one-pot synthesis system established in this study is simple and does not need sterilization or aseptic operations. The findings indicate the potential of H. bluephagenesis for industrial production of IA.


Asunto(s)
Halomonas , Succinatos , Halomonas/metabolismo , Halomonas/genética , Succinatos/metabolismo , Ingeniería Metabólica , Microbiología Industrial , Ácido Cítrico/metabolismo , Fermentación
14.
Angew Chem Int Ed Engl ; : e202412808, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175330

RESUMEN

A highly selective cross-coupling reaction between Si-OAc (AcO = acetoxy) and Si-OH compounds that generates unsymmetrical and symmetrical oligosiloxanes concurrent with the release of acetic acid has been developed. The high selectivity arises from the reactivity difference that depends on the varying number of acetoxy groups present, thus facilitating a clean one-pot synthesis of oligosiloxanes. For instance, the reactions of di-, tri-, or tetraacetoxysilanes with silanols furnish acetoxy-containing di- and trisiloxanes in high yield. Two equivalents of tetraacetoxysilane can react with various silanediols to form 1,1,1,3,3,3-hexaacetoxytrisiloxanes, which subsequently react with a second molecule of a silanediol to selectively afford 1,1,3,3-tetraacetoxycyclotetrasiloxanes. The cyclotetrasiloxanes further react with a third molecule of silanediol to provide unprecedented bicyclic pentasiloxanes with acetoxy groups at the bridgehead silicon atoms. Applications of the acetoxy-containing products as efficient surface-treatment agents and new building blocks for highly heat-resistant materials are demonstrated.

15.
Front Cell Infect Microbiol ; 14: 1409078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176261

RESUMEN

Introduction: Mycoplasma pneumoniae (MP) is the major cause of respiratory infections that threaten the health of children and adolescents worldwide. Therefore, an early, simple, and accurate detection approach for MP is critical to prevent outbreaks of MP-induced community-acquired pneumonia. Methods: Here, we explored a simple and accurate method for MP identification that combines loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12b assay in a one-pot reaction. Results: In the current study, the whole reaction was completed within 1 h at a constant temperature of 57°C. The limit of detection of this assay was 33.7 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100%, without any cross-reactivity with other pathogens. Overall, 272 clinical samples were used to evaluate the clinical performance of LAMP-CRISPR/Cas12b. Compared with the gold standard results from real-time PCR, the present method provided a sensitivity of 88.11% (126/143), specificity of 100% (129/129), and consistency of 93.75% (255/272). Discussion: Taken together, our preliminary results illustrate that the LAMP-CRISPR/Cas12b method is a simple and reliable tool for MP diagnosis that can be performed in resource-limited regions.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Mycoplasma pneumoniae , Técnicas de Amplificación de Ácido Nucleico , Neumonía por Mycoplasma , Sensibilidad y Especificidad , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/microbiología , Técnicas de Diagnóstico Molecular/métodos , Niño , Límite de Detección
16.
Beilstein J Org Chem ; 20: 2024-2077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161713

RESUMEN

Pyrazoles are rarely found in nature but are traditionally used in the agrochemical and pharmaceutical industries, while other areas of use are also actively developing. However, they have also found numerous other applications. The search for new and efficient syntheses of these heterocycles is therefore highly relevant. The modular concept of multicomponent reactions (MCR) has paved a broad alley to heteroaromatics. The advantages over traditional methods are the broader scope and increased efficiency of these reactions. In particular, traditional multistep syntheses of pyrazoles have considerably been extended by MCR. Progress has been made in the cyclocondensation of 1,3-dielectrophiles that are generated in situ. Limitations in the regioselectivity of cyclocondensation with 1,3-dicarbonyls were overcome by the addition-cyclocondensation of α,ß-unsaturated ketones. Embedding 1,3-dipolar cycloadditions into a one-pot process has additionally been developed for concise syntheses of pyrazoles. The MCR strategy also allows for concatenating classical condensation-based methodology with modern cross-coupling and radical chemistry, as well as providing versatile synthetic approaches to pyrazoles. This overview summarizes the most important MCR syntheses of pyrazoles based on ring-forming sequences in a flashlight fashion.

17.
J Pharm Biomed Anal ; 250: 116400, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39126811

RESUMEN

Development of monoclonal and bispecific antibody-based protein therapeutics requires detailed characterization of native disulfide linkages, which is commonly achieved through peptide mapping under non-reducing conditions followed by liquid chromatography-mass spectrometry (LC-MS) analysis. One major challenge of this method is incomplete protein digestion due to insufficient denaturation of antibodies under non-reducing conditions. For a long time, researchers have explored various strategies with the aim of efficiently digesting antibody drugs when the disulfide bonds remain intact, but few could achieve this by using a simple and generic approach with well controlled disulfide scrambling artifacts. Here, we report a simple method for fast and efficient mapping of native disulfides of monoclonal and bispecific antibody-based protein therapeutics. The method was optimized to achieve optimal digestion efficiency by denaturing proteins with 8 M urea plus 0-1.25 M guanidine-HCl at elevated temperature (50 °C), followed by two-step digestion with trypsin/Lys-C mix using a one-pot reaction. The only parameter that needs to be optimized for different proteins is the concentration of guanidine-HCl present. This simplified sample preparation eliminated buffer exchange and can be completed within three hours. By using this new method, all native disulfide bonds were confirmed for these monoclonal and bispecific antibodies with high confidence. When compared with a commercial kit utilizing low-pH digestion condition, the new method demonstrated higher digestion efficiency and shorter sample preparation time. These results suggest this new one-pot-two-step digestion method is suitable for the characterization of antibody disulfide bonds, particularly for those antibodies with digestion-resistant domains under typical digestion conditions.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales , Disulfuros , Mapeo Peptídico , Tripsina , Anticuerpos Biespecíficos/química , Disulfuros/química , Mapeo Peptídico/métodos , Anticuerpos Monoclonales/química , Tripsina/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos , Desnaturalización Proteica , Guanidina/química , Metaloendopeptidasas
18.
BMC Chem ; 18(1): 155, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182154

RESUMEN

The synthesis of Octakis [3- (3-amino propyl triethoxysilane) propyl] octa-silsesquioxane (APTPOSS), a derivative of polyhedral oligomeric silsesquioxane, was utilized to produce an efficient nanocomposite. MNPs@Silica/APTPOSS was characterized through scanning electron microscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, X-ray diffraction, and Thermogravimetric analysis. These magnetic nanoparticles, a combination of organic-inorganic hybrid polyhedral oligomeric silsesquioxane, were utilized as a proficient heterogeneous catalyst in the one-pot synthesis of spirooxindoles derivatives. Furthermore, they could be swiftly isolated and reused six times while maintaining their catalytic efficiency.

19.
Life (Basel) ; 14(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39063600

RESUMEN

The abiotic formation of nucleotides from small, simple molecules is of large interest in the context of elucidating the origin of life scenario. In what follows, it is shown that nucleosides and nucleotides can be formed from formamide in a one-pot reaction utilizing the mineral cerium phosphate (CePO4) as a photocatalyst, a catalyst and a reactant that supplies the necessary phosphate groups. While the most abundant RNA/DNA building blocks were thymidine and thymidine monophosphate, considerable yields of other building blocks such as cytidine, cytidine monophosphate, and adenosine cyclic monophosphate were found. Comparing the yield of nucleosides and nucleotides under light conditions to that in the dark suggests that in the presence of cerium phosphate, light promotes the formation of nucleobases, whereas the formation of nucleotides from nucleosides take place even in the absence of light. The scenario described herein is considerably simpler than other scenarios involving several steps and several reactants. Therefore, by virtue of the principle of Occam's razor, it should be of large interest for the community.

20.
Colloids Surf B Biointerfaces ; 243: 114127, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39079186

RESUMEN

Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings. Herein, we reported a simple one-pot method to prepare double-network hydrogels containing N-acryloyl glycinamide (NAGA), N-hydroxyethyl acrylamide (HEAA) and TA. The resulting NHT hydrogel exhibited excellent tensile properties, fatigue resistance, and notch insensitivity to ensure mechanical stability under large deformation and stress in vitro. The NHT hydrogel also demonstrated room-temperature self-healing, broad adhesion to various substrates, synergistic swelling ability. In addition, catechol and benzene rings from TA helped shield against UV radiation and acted as free radical scavengers to relieve oxidative stress in wound damage. As a result, full-layer wounds in mice treated with NHT patches showed a higher healing rate, in which epithelialization was completed within 14 days. The integrated function enables hydrogel to maintain mechanical stability in dynamic motion environments with high strain and defects, with great potential for future clinical translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA