Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
2.
Front Genet ; 15: 1375770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156962

RESUMEN

We report an index patient with complete insensitivity to pain and a history of painless fractures, joint hypermobility, and behavioral problems. The index patient descends from a family with notable cases among his maternal relatives, including his aunt and his mother's first cousin, both of whom suffer from congenital insensitivity to pain. The patient had normal results for prior genetic testing: fragile-X syndrome testing, chromosomal microarray analysis, and exome sequencing. Optical genome mapping detected a homozygous deletion affecting the noncoding 5' untranslated region (UTR) and the first non-coding exon of the SCN9A gene in all affected family members, compatible with recessive disease transmission. Pathogenic homozygous loss-of-function variants in the SCN9A gene are associated with impaired pain sensation in humans. Optical genome mapping can thus detect pathogenic structural variants in patients without molecular etiology by standard diagnostic procedures and is a more accessible diagnostic tool than short-read or long-read whole-genome sequencing.

3.
Front Cell Dev Biol ; 12: 1415258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144255

RESUMEN

Background: Tuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%-90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have "no mutation identified" (NMI). Methods: We hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing. Results: We identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance. Conclusion: Our findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI).

4.
Am J Med Genet A ; : e63847, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189835

RESUMEN

In 1971, Ruvalcaba and colleagues reported a new syndrome in two brothers with severe intellectual disability, dysmorphic features, osseous dysplasia, and overlapping features in two intellectually disabled female maternal first cousins. No genetic cause was identified. We report on updated genomic studies and clinical follow-up in this family, including one of the original probands and their niece, whose own lifelong diagnostic odyssey had been unresolved for over four decades. Trio exome sequencing and copy number variant analysis in an original proband revealed an unbalanced chromosome translocation with a 3.18 Mb terminal deletion of 2q37.3qter and 6.54 Mb terminal duplication of 5q35.2qter. His unaffected sister had no evidence of a chromosomal imbalance, and her affected daughter has the reciprocal terminal duplication at 2q37.3qter and terminal deletion at 5q35.2qter. We used optical genome mapping and Hi-C analysis to further characterize the t(2;5)(q37.3;q35.2) translocation as well as RNA-seq analysis and genome-wide methylation profiling to elucidate the functional consequences of the genomic alterations. Candidate genes for the observed phenotypes include HDAC4, KIF1A, D2HGDH, FLT4, HNRNPH1, and NSD1.

5.
Cancer Sci ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180374

RESUMEN

Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.

6.
Biomedicines ; 12(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39200124

RESUMEN

A glioma is a solid brain tumor which originates in the brain or brain stem area. The diagnosis of gliomas based on standard-of-care (SOC) techniques includes karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), for detecting the pathogenic variants and chromosomal abnormalities. But these techniques do not reveal the complete picture of genetic complexity, thus requiring an alternative technology for better characterization of these tumors. The present study aimed to evaluate the clinical performance and feasibility of using optical genome mapping (OGM) for chromosomal characterization of gliomas. Herein, we evaluated 10 cases of gliomas that were previously characterized by CMA. OGM analysis showed concordance with the results of CMA in identifying the characterized Structural Variants (SVs) in these cases. More notably, it also revealed additional clinically relevant aberrations, demonstrating a higher resolution and sensitivity. These clinically relevant SVs included cryptic translocation, and SVs which are beyond the detection capabilities of CMA. Our analysis highlights the unique capability of OGM to detect all classes of SVs within a single assay, thereby unveiling clinically significant data with a shorter turnaround time. Adopting this diagnostic tool as a standard of care for solid tumors like gliomas shows potential for improving therapeutic management, potentially leading to more personalized and timely interventions for patients.

7.
Curr Protoc ; 4(7): e1094, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966883

RESUMEN

Short tandem repeat (STR) expansions are associated with more than 60 genetic disorders. The size and stability of these expansions correlate with the severity and age of onset of the disease. Therefore, being able to accurately detect the absolute length of STRs is important. Current diagnostic assays include laborious lab experiments, including repeat-primed PCR and Southern blotting, that still cannot precisely determine the exact length of very long repeat expansions. Optical genome mapping (OGM) is a cost-effective and easy-to-use alternative to traditional cytogenetic techniques and allows the comprehensive detection of chromosomal aberrations and structural variants >500 bp in length, including insertions, deletions, duplications, inversions, translocations, and copy number variants. Here, we provide methodological guidance for preparing samples and performing OGM as well as running the analysis pipelines and using the specific repeat expansion workflows to determine the exact repeat length of repeat expansions expanded beyond 500 bp. Together these protocols provide all details needed to analyze the length and stability of any repeat expansion with an expected repeat size difference from the expected wild-type allele of >500 bp. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Genomic ultra-high-molecular-weight DNA isolation, labeling, and staining Basic Protocol 2: Data generation and genome mapping using the Bionano Saphyr® System Basic Protocol 3: Manual De Novo Assembly workflow Basic Protocol 4: Local guided assembly workflow Basic Protocol 5: EnFocus Fragile X workflow Basic Protocol 6: Molecule distance script workflow.


Asunto(s)
Mapeo Cromosómico , Humanos , Mapeo Cromosómico/métodos , Expansión de las Repeticiones de ADN/genética , Repeticiones de Microsatélite/genética , ADN/genética
8.
Am J Med Genet A ; : e63814, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011850

RESUMEN

We report a 17-year-old male with supravalvular stenosis, initial failure to thrive and delayed early development, short stature, acromelia, dysmorphic facial features, hypertelorism, macrocephaly, syringomyelia, hypertension, and anxiety disorder. Fluorescent in situ hybridization (FISH), chromosomal microarray analysis (CMA), and exome sequencing (ES) were nondiagnostic. Combined optical genome mapping (OGM) and genome sequencing (GS) showed a complex rearrangement including an X chromosome with a 22.5 kb deletion in band Xq28 replaced by a 61.4 kb insertion of duplicated chromosome 7p22.3 material. The deletion removes the distal 3' untranslated region (UTR) of FUNDC2, the entire CMC4 and MTCP1, and the first five exons of BRCC3. Transcriptome analysis revealed absent expression of CMC4 and MTCP1 and BRCC3 with normal transcript level of FUNDC2. The inserted duplication includes only one known gene: UNCX. Similar overlapping Xq28 deletions have been reported to be associated with Moyamoya disease (MMD), short stature, hypergonadotropic hypogonadism (HH), and facial dysmorphism. Although he has short stature, our patient does not have signs of Moyamoya arteriopathy or hypogonadism. The structurally abnormal X chromosome was present in his mother, but not in his unaffected brother, maternal uncle, or maternal grandparents. We propose that the combination of his absent Xq28 and duplicated 7p22.3 genomic material is responsible for his phenotype. This case highlights the potential of combined OGM and GS for detecting complex structural variants compared with standard of care genetic testing such as CMA and ES.

9.
Am J Med Genet A ; : e63818, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041659

RESUMEN

Despite advances in next generation sequencing (NGS), genetic diagnoses remain elusive for many patients with neurologic syndromes. Long-read sequencing (LRS) and optical genome mapping (OGM) technologies improve upon existing capabilities in the detection and interpretation of structural variation in repetitive DNA, on a single haplotype, while also providing enhanced breakpoint resolution. We performed LRS and OGM on two patients with known chromosomal rearrangements and inconclusive Sanger or NGS. The first patient, who had epilepsy and developmental delay, had a complex translocation between two chromosomes that included insertion and inversion events. The second patient, who had a movement disorder, had an inversion on a single chromosome disrupted by multiple smaller inversions and insertions. Sequence level resolution of the rearrangements identified pathogenic breaks in noncoding sequence in or near known disease-causing genes with relevant neurologic phenotypes (MBD5, NKX2-1). These specific variants have not been reported previously, but expected molecular consequences are consistent with previously reported cases. As the use of LRS and OGM technologies for clinical testing increases and data analyses become more standardized, these methods along with multiomic data to validate noncoding variation effects will improve diagnostic yield and increase the proportion of probands with detectable pathogenic variants for known genes implicated in neurogenetic disease.

10.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000022

RESUMEN

CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.


Asunto(s)
Cromosomas Humanos X , Proteínas Serina-Treonina Quinasas , Humanos , Femenino , Cromosomas Humanos X/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Inversión Cromosómica , Síndromes Epilépticos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Espasmos Infantiles
11.
Genes (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39062704

RESUMEN

The identification of structural variants (SVs) in genomic data represents an ongoing challenge because of difficulties in reliable SV calling leading to reduced sensitivity and specificity. We prepared high-quality DNA from 9 parent-child trios, who had previously undergone short-read whole-genome sequencing (Illumina platform) as part of the Genomics England 100,000 Genomes Project. We reanalysed the genomes using both Bionano optical genome mapping (OGM; 8 probands and one trio) and Nanopore long-read sequencing (Oxford Nanopore Technologies [ONT] platform; all samples). To establish a "truth" dataset, we asked whether rare proband SV calls (n = 234) made by the Bionano Access (version 1.6.1)/Solve software (version 3.6.1_11162020) could be verified by individual visualisation using the Integrative Genomics Viewer with either or both of the Illumina and ONT raw sequence. Of these, 222 calls were verified, indicating that Bionano OGM calls have high precision (positive predictive value 95%). We then asked what proportion of the 222 true Bionano SVs had been identified by SV callers in the other two datasets. In the Illumina dataset, sensitivity varied according to variant type, being high for deletions (115/134; 86%) but poor for insertions (13/58; 22%). In the ONT dataset, sensitivity was generally poor using the original Sniffles variant caller (48% overall) but improved substantially with use of Sniffles2 (36/40; 90% and 17/23; 74% for deletions and insertions, respectively). In summary, we show that the precision of OGM is very high. In addition, when applying the Sniffles2 caller, the sensitivity of SV calling using ONT long-read sequence data outperforms Illumina sequencing for most SV types.


Asunto(s)
Benchmarking , Secuenciación de Nanoporos , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/normas , Secuenciación de Nanoporos/métodos , Benchmarking/métodos , Variación Estructural del Genoma/genética , Mapeo Cromosómico/métodos , Genoma Humano/genética , Genómica/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Femenino , Nanoporos , Masculino , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
12.
Genomics ; 116(5): 110894, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019410

RESUMEN

Technologies for detecting structural variation (SV) have advanced with the advent of long-read sequencing, which enables the validation of SV at a nucleotide level. Optical genome mapping (OGM), a technology based on physical mapping, can also provide comprehensive SVs analysis. We applied long-read whole genome sequencing (LRWGS) to accurately reconstruct breakpoint (BP) segments in a patient with complex chromosome 6q rearrangements that remained elusive by conventional karyotyping. Although all BPs were precisely identified by LRWGS, there were two possible ways to construct the BP segments in terms of their orders and orientations. Thus, we also used OGM analysis. Notably, OGM recognized entire inversions exceeding 500 kb in size, which LRWGS could not characterize. Consequently, here we successfully unveil the full genomic structure of this complex chromosomal 6q rearrangement and cryptic SVs through combined long-molecule genomic analyses, showcasing how LRWGS and OGM can complement each other in SV analysis.

13.
Genes (Basel) ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927744

RESUMEN

While balanced reciprocal translocations are relatively common, they often remain clinically silent unless they lead to the disruption of functional genes. In this study, we present the case of a boy exhibiting developmental delay and mild intellectual disability. Initial karyotyping revealed a translocation t(5;6)(q13;q23) between chromosomes 5 and 6 with limited resolution. Optical genome mapping (OGM) enabled a more precise depiction of the breakpoint regions involved in the reciprocal translocation. While the breakpoint region on chromosome 6 did not encompass any known gene, OGM revealed the disruption of the RASGRF2 (Ras protein-specific guanine nucleotide releasing factor 2) gene on chromosome 5, implicating RASGRF2 as a potential candidate gene contributing to the observed developmental delay in the patient. Variations in RASGRF2 have so far not been reported in developmental delay, but research on the RASGRF2 gene underscores its significance in various aspects of neurodevelopment, including synaptic plasticity, signaling pathways, and behavioral responses. This study highlights the utility of OGM in identifying breakpoint regions, providing possible insights into the understanding of neurodevelopmental disorders. It also helps affected individuals in gaining more knowledge about potential causes of their conditions.


Asunto(s)
Discapacidades del Desarrollo , Translocación Genética , Humanos , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Factores de Intercambio de Guanina Nucleótido ras/genética , Mapeo Cromosómico , Cromosomas Humanos Par 5/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología
15.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915648

RESUMEN

Carcinogenesis often involves significant alterations in the cancer genome architecture, marked by large structural and copy number variations (SVs and CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping and nanopore sequencing are attractive technologies that bridge this resolution gap and offer enhanced performance for cytogenetic applications. These methods profile native, individual DNA molecules, thus capturing epigenetic information. We applied both techniques to characterize a clear cell renal cell carcinoma (ccRCC) tumor's structural and copy number landscape, highlighting the relative strengths of each method in the context of variant size and average read length. Additionally, we assessed their utility for methylome and hydroxymethylome profiling, emphasizing differences in epigenetic analysis applicability.

16.
Appl Clin Genet ; 17: 63-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828444

RESUMEN

Optical Genome Mapping (OGM) technology has garnered growing interest for the identification of chromosomal structural variations (SVs), particularly complex ones that are implicated in genetic diseases in humans. In this study, we performed genetic diagnostics on a neonatal patient who presented with feeding difficulties, hypotonia, and an atrial septal defect. We utilized a combination of trio-whole exome sequencing and OGM for our analysis. The results revealed an unbalanced translocation between maternal chromosomes 4 and 6 in the proband, ogm[GRch38]t(4:6)(q35.2;q25.3), resulting in a 2.8 Mb deletion at the 4q35 terminal and a 10.2 Mb duplication at the 6q25 terminal. In summary, this study highlights how OGM, in conjunction with other genetic approaches, can unveil the genetic etiology of complex clinical syndromes. Neonatal patients often exhibit low specific phenotypes, underlining the significance of SV detection.

17.
Med Genet ; 36(1): 13-20, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38835966

RESUMEN

During the last five decades, chromosome analysis identified recurring translocations and inversions in leukemias and lymphomas, which led to cloning of genes at the breakpoints that contribute to oncogenesis. Such molecular cytogenetic methods as fluorescence in situ hybridization (FISH), copy number (CN) arrays or optical genome mapping (OGM) have augmented standard chromosome analysis. The use of both cytogenetic and molecular methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and next generation sequencing (NGS), including whole-genome sequencing (WGS), discloses alterations that not only delineate separate WHO disease entities but also constitute independent prognostic factors, whose use in the clinic improves management of patients with hematologic neoplasms.

18.
Genes (Basel) ; 15(5)2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38790188

RESUMEN

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


Asunto(s)
Hibridación Fluorescente in Situ , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Hibridación Fluorescente in Situ/métodos , Mapeo Cromosómico/métodos , Trastornos de Fallo de la Médula Ósea/genética , Aberraciones Cromosómicas , Adolescente , Análisis Citogenético/métodos , Enfermedades de la Médula Ósea/genética , Cariotipificación/métodos , Adulto Joven
19.
Sci Rep ; 14(1): 11239, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755281

RESUMEN

While short-read sequencing currently dominates genetic research and diagnostics, it frequently falls short of capturing certain structural variants (SVs), which are often implicated in the etiology of neurodevelopmental disorders (NDDs). Optical genome mapping (OGM) is an innovative technique capable of capturing SVs that are undetectable or challenging-to-detect via short-read methods. This study aimed to investigate NDDs using OGM, specifically focusing on cases that remained unsolved after standard exome sequencing. OGM was performed in 47 families using ultra-high molecular weight DNA. Single-molecule maps were assembled de novo, followed by SV and copy number variant calling. We identified 7 variants of interest, of which 5 (10.6%) were classified as likely pathogenic or pathogenic, located in BCL11A, OPHN1, PHF8, SON, and NFIA. We also identified an inversion disrupting NAALADL2, a gene which previously was found to harbor complex rearrangements in two NDD cases. Variants in known NDD genes or candidate variants of interest missed by exome sequencing mainly consisted of larger insertions (> 1kbp), inversions, and deletions/duplications of a low number of exons (1-4 exons). In conclusion, in addition to improving molecular diagnosis in NDDs, this technique may also reveal novel NDD genes which may harbor complex SVs often missed by standard sequencing techniques.


Asunto(s)
Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Femenino , Masculino , Mapeo Cromosómico/métodos , Secuenciación del Exoma/métodos , Niño , Variación Estructural del Genoma , Preescolar
20.
Cancers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38730645

RESUMEN

BACKGROUND: Gene rearrangements affecting KMT2A are frequent in acute myeloid leukemia (AML) and are often associated with a poor prognosis. KMT2A gene fusions are often detected by chromosome banding analysis and confirmed by fluorescence in situ hybridization. However, small intragenic insertions, termed KMT2A partial tandem duplication (KMT2A-PTD), are particularly challenging to detect using standard molecular and cytogenetic approaches. METHODS: We have validated the use of a custom hybrid-capture-based next-generation sequencing (NGS) panel for comprehensive profiling of AML patients seen at our institution. This NGS panel targets the entire consensus coding DNA sequence of KMT2A. To deduce the presence of a KMT2A-PTD, we used the relative ratio of KMT2A exons coverage. We sought to corroborate the KMT2A-PTD NGS results using (1) multiplex-ligation probe amplification (MLPA) and (2) optical genome mapping (OGM). RESULTS: We analyzed 932 AML cases and identified 41 individuals harboring a KMT2A-PTD. MLPA, NGS, and OGM confirmed the presence of a KMT2A-PTD in 22 of the cases analyzed where orthogonal testing was possible. The two false-positive KMT2A-PTD calls by NGS could be explained by the presence of cryptic structural variants impacting KMT2A and interfering with KMT2A-PTD analysis. OGM revealed the nature of these previously undetected gene rearrangements in KMT2A, while MLPA yielded inconclusive results. MLPA analysis for KMT2A-PTD is limited to exon 4, whereas NGS and OGM resolved KMT2A-PTD sizes and copy number levels. CONCLUSIONS: KMT2A-PTDs are complex gene rearrangements that cannot be fully ascertained using a single genomic platform. MLPA, NGS panels, and OGM are complementary technologies applied in standard-of-care testing for AML patients. MLPA and NGS panels are designed for targeted copy number analysis; however, our results showed that integration of concurrent genomic alterations is needed for accurate KMT2A-PTD identification. Unbalanced chromosomal rearrangements overlapping with KMT2A can interfere with the diagnostic sensitivity and specificity of copy-number-based KMT2A-PTD detection methodologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA