Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
J Environ Sci (China) ; 147: 22-35, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003042

RESUMEN

High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.


Asunto(s)
Arcilla , Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Arcilla/química , Suelo/química , Catálisis , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Calor
2.
Environ Sci Pollut Res Int ; 31(32): 44518-44541, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955972

RESUMEN

This research examines advancements in the development of process-based models of constructed wetlands (CWs) tailored for simulating conventional water quality parameters (CWQPs). Despite the promising potential of CWs for emerging organic contaminant (EOC) removal, the available CW models do not yet integrate EOC removal processes. This study explores the need and possibility of integrating EOCs into existing CW models. Nevertheless, a few researchers have developed process-based models of other wastewater treatment systems (e.g., activated sludge systems) to simulate certain EOCs. The EOC removal processes observed in other wastewater treatment systems are analogous to those in CWs. Therefore, the corresponding equations governing these processes can be tailored and integrated into existing CW models, similarly to what was done successfully in the past for CWQPs. This study proposed the next generation of CW models, which outlines 12 areas for future work: integrating EOC removal processes; ensuring data availability for model calibration and validation; considering quantitative and sensitive parameters; quantifying microorganisms in CWs; modifying biofilm dynamics models; including pH, aeration, and redox potential; integrating clogging and plant sub-models; modifying hydraulic sub-model; advancing computer technology and programming; and maintaining a balance between simplicity and complexity. These suggestions provide valuable insights for enhancing the design and operational features of current process-based models of CWs, facilitating improved simulation of CWQPs, and integration of EOCs into the modelling framework.


Asunto(s)
Eliminación de Residuos Líquidos , Humedales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Contaminantes Químicos del Agua , Modelos Teóricos , Calidad del Agua
3.
Environ Pollut ; : 124488, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960122

RESUMEN

The combination of integrative passive sampling and bioassays is a promising approach for monitoring the toxicity of polar organic contaminants in aquatic environments. However, the design of integrative passive samplers can affect the accumulation of compounds and therewith the bioassay responses. The present study aimed to determine the effects of sampler housing and sorbent type on the number of chemical features accumulated in polar passive samplers and the subsequent bioassay responses to extracts of these samplers. To this end, four integrative passive sampler configurations, resulting from the combination of polar organic chemical integrative sampler (POCIS) and Speedisk housings with hydrophilic-lipophilic balance and hydrophilic divinylbenzene sorbents, were simultaneously exposed at reference and contaminated surface water locations. The passive sampler extracts were subjected to chemical non-target screening and a battery of five bioassays. Extracts from POCIS contained a higher number of chemical features and caused higher bioassay responses in 91% of cases, while the two sorbents accumulated similar numbers of features and caused equally frequent but different bioassay responses. Hence, the passive sampler design critically affected the number of accumulated polar organic contaminants as well as their toxicity, highlighting the importance of passive sampler design for effect-based water quality assessment.

4.
Environ Toxicol Chem ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042019

RESUMEN

Legacy brominated flame retardants, including polybrominated diphenyl ethers (PBDEs), have been classified as persistent organic pollutants and replaced with novel brominated flame retardants (NBFRs). The octanol-water partition coefficients (log KOW) of NBFRs have been computationally estimated, but the log KOW values provided by these methods can differ by 1 to 3 orders of magnitude. Given the importance of this parameter in fate and toxicity models, we indirectly measured the log KOW values of eight NBFRs by their capacity factor (k') on a reversed-phase high-performance liquid chromatography (HPLC) C18 column by isocratic elution and compared these measured values with those estimated by nine computational models. Log KOW values were obtained for the NBFRs 1,2-bis(2,4,6-tribromophenoxy) ethane, pentabromobenzene, pentabromoethylbenzene, pentabromotoluene, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate, allyl 2,4,6-tribromophenylether, 2,3-dibromopropyl-2,4,6-tribromophenyl ether, and bis(2-ethylhexyl) tetrabromophthalate. A training set of phthalates, polychlorinated biphenyls, PBDEs, and halogenated benzenes were chosen to obtain the log k'-log KOW calibration for the NBFRs. The computational models KowWIN, XLogP3, EAS-E Suite, COSMOtherm, DirectML, and Abraham polyparameter linear free energy relationships all predicted the log KOW values of the calibration compounds to within 1 order of magnitude without significant bias. The median of these models predicted log KOW values for the calibration compounds that were close to those known in the literature with root mean square error (RMSE) = 0.224 and for the NBFRs that were close to those measured by HPLC (RMSE = 0.334). Environ Toxicol Chem 2024;00:1-10. © 2024 SETAC.

5.
Environ Res ; 260: 119568, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971357

RESUMEN

The aim of this study was to synthesize effective and economical MoS2/CdNi@rGO photocatalysts and investigate their performance in the degradation of organic pollutants in synthetic effluent. The objective was to assess the characterization results of the synthesized photocatalysts using XRD, SEM/EDS, TEM/HR-TEM, Raman spectrum, and BET isotherm analysis tools. These analyses revealed the good adhesion of MoS2 with rGO and provided insights into the structure and properties of the materials. The results showed that the MoS2/CdNi@rGO photocatalysts exhibited remarkable degradation efficiency for organic pollutants such as Rhodamine-B, erichrome black, and malachite green. The outcomes of the study demonstrated that the MoS2/CdNi@rGO catalyst had the greatest rate constant for Rhodamine-B (RhB) decomposition. which would have been approximately 33 times higher than that of pure RGO (0.0121 min-1). The MoS2/CdNi@rGO photocatalysts also showed excellent recyclability and persistence across five recycle assays, indicating their potential for practical applications in wastewater treatment. The photocatalyst was moderately active, stable up to its fifth usage and stability of the photocatalyst before and after the photocatalytic reaction was also been studied using XRD and SEM. Further research in this area could lead to the development of advanced photocatalytic technologies for environmental remediation.

6.
Environ Sci Pollut Res Int ; 31(31): 44254-44271, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38943002

RESUMEN

Efficient catalysts play a pivotal role in advancing eco-friendly water treatment strategies, particularly in the removal of diverse organic contaminants found in water-petroleum sources. This study addresses the multifaceted challenges posed by contaminants, encompassing a spectrum of heavy metals such as As, Cd, Cr, Mn, Mo, Ni, Pb, Sb, Se, and Zn alongside pollutants like oily water (OIW), total suspended solids (TSS), chemical oxygen demand (COD), dyes, and pharmaceuticals, posing threats to both aquatic and terrestrial ecosystems. Herein, we present the synthesis of biogenically derived Mn@NiO nanocomposite (NC) photocatalysts, a sustainable methodology employing an aqueous Rosmarinus officinalis L. extract, yielding particles with a size of 36.7 nm. The catalyst demonstrates exceptional efficacy in removing heavy metals, achieving rates exceeding 99-100% within 30 min, alongside notable removal efficiencies for OIW (98%), TSS (87%), and COD (98%). Furthermore, our photodegradation experiments showed remarkable efficiencies, with 94% degradation for Rose Bengal (RB) and 96% for methylene blue (MB) within 120 min. The degradation kinetics adhere to pseudo-first-order behavior, with rate constants of 0.0227 min-1 for RB and 0.0370 min-1 for MB. Additionally, the NC exhibits significant antibiotic degradation rates of 97% for cephalexin (CEX) and 96% for amoxicillin (AMOX). The enhanced photocatalytic performance is attributed to the synergistic interplay between the Mn and NiO nanostructures, augmenting responsiveness to sunlight while mitigating electron-hole pair recombination. Notably, the catalyst demonstrates outstanding stability and reusability across multiple cycles, maintaining its stable nanostructure without compromise.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Nanoestructuras , Metales Pesados/química , Manganeso/química , Níquel/química , Nanocompuestos/química , Catálisis , Purificación del Agua/métodos
7.
Huan Jing Ke Xue ; 45(6): 3142-3152, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897738

RESUMEN

Groundwater contaminants pose a great threat to water safety and human health. Therefore, in this study, the traditional hazard assessment method was improved and a comprehensive system covering hazard assessment, screening, and characterization by combining the toxicological priority index (Tox Pi) framework; absorption, distribution, metabolism, and excretory (ADME) analysis; and bipartite network analysis was constructed. Then, the system was applied to hazard assessment and toxic pollutants screening from the 234 hydrophobic organic contaminants (HOCs) identified in the groundwater of Beijing. First, the top 20 pollutants with hazard potential were screened out using the Tox Pi method. Subsequently, 17 high-priority HOCs were further identified based on the ADME property analysis. Then, the molecular targets of these 17 high-priority HOCs were characterized through systematic bipartite network analysis. Finally, ten HOCs with high hazard were screened through correlation and weighted average analysis, and it was revealed that their toxic effects were mainly concentrated in the endocrine-disrupting effect, carcinogenic effect, and genetic toxicity. This study provides technical support for the prevention of regional groundwater contaminants.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Monitoreo del Ambiente/métodos , Beijing , Sustancias Peligrosas/análisis , Compuestos Orgánicos/análisis , Medición de Riesgo
8.
AIMS Microbiol ; 10(2): 415-448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919713

RESUMEN

Here, phytoremediation studies of toxic metal and organic compounds using plants augmented with plant growth-promoting bacteria, published in the past few years, were summarized and reviewed. These studies complemented and extended the many earlier studies in this area of research. The studies summarized here employed a wide range of non-agricultural plants including various grasses indigenous to regions of the world. The plant growth-promoting bacteria used a range of different known mechanisms to promote plant growth in the presence of metallic and/or organic toxicants and thereby improve the phytoremediation ability of most plants. Both rhizosphere and endophyte PGPB strains have been found to be effective within various phytoremediation schemes. Consortia consisting of several PGPB were often more effective than individual PGPB in assisting phytoremediation in the presence of metallic and/or organic environmental contaminants.

9.
Environ Res ; 259: 119445, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942259

RESUMEN

In present investigation, Carica papaya leaf extract has been employed as a bio-reductant agent in order to synthesize ecologically sustainable bio-coupled gold nanoparticles. The formation of gold nanoparticles was confirmed based on colour change of solution and its surface plasmon resonance peak measured using UV-Vis Spectrophotometer (UV-Vis). The Morphology and size of nanoparticles were determined using transmission electron microscope (SEM/TEM), and its crystalline structure by X-ray diffraction studies. Surface area was determined via BET isotherm analysis. The elemental composition of Au nanoparticles was developed using the technique of energy dispersive spectroscopy (EDS). Furthermore, FTIR analysis delineated the presence of functional groups present in the samples of the synthesized AuNPs. Thus, the efficiency of bio coupled Au nanoparticles in photo catalytically decomposing methylene blue was examined under the influence of visible light., the lethal MB colorant had been reduced to 95 % Within 90 min. And also 60% TOC removal was recorded after 5 min of degradation reaction, which increased to 99% after 90 min. Furthermore, cytotoxic experiments on Michigan Cancer Foundations-7 (MCF-7) cell lines showed that Au nanoparticles are effective anticancer agents with an IC50 of 87.2 g/mL on the top of the present work revealed the eco-safety and affordable production of Au nanoparticles from Carica papaya leaf extract, which displayed photocatalytic debasement of organic pollutants and cyto-toxicity effects was investigated.

10.
Environ Sci Technol ; 58(24): 10786-10795, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838217

RESUMEN

Storage lipids are an important compartment in the bioaccumulation of neutral organic compounds. Reliable models for predicting storage lipid-water and storage lipid-air partition coefficients (Kislip/w and Kislip/a), as well as their temperature dependence, are considered useful. Polyparameter linear free energy relationships (PP-LFERs) are accurate, general, and mechanistically clear models for predicting partitioning-related physicochemical quantities. About a decade ago, PP-LFERs were calibrated for Kislip/w at the physiological temperature of 37 °C. However, to date, a comprehensive collection and sufficiently reliable PP-LFERs for Kislip/w and Kislip/a at the most common standard temperature of 25 °C are still lacking. In this study, experimentally based Kislip/w and/or Kislip/a values at 25 °C for 278 compounds were extensively collected or converted from the literature. Subsequently, PP-LFERs were calibrated for Kislip/w and Kislip/a at 25 °C, performing well over 10 orders of magnitude with root-mean-square errors of 0.17-0.21 log units for compounds with reliable descriptors. Furthermore, standard internal energy changes of transfer from water or air to storage lipids for 158 compounds were derived and used to calibrate PP-LFERs for estimating the temperature dependence of Kislip/w or Kislip/a. Additionally, using PP-LFERs, low-density polyethylene was confirmed to be a better storage lipid analogue than silicone and polyoxymethylene in the equilibrium passive sampling of nonpolar and H-bond acceptor polar compounds.


Asunto(s)
Lípidos , Compuestos Orgánicos , Compuestos Orgánicos/química , Lípidos/química , Temperatura , Termodinámica , Agua/química
11.
J Hazard Mater ; 476: 134953, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908176

RESUMEN

The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.

12.
Water Res ; 258: 121811, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38833811

RESUMEN

Urban stormwater runoff is considered a key component of future water supply portfolios for water-stressed cities. Beneficial use of runoff, such as capture for recharge of drinking water aquifers, relies on improved stormwater treatment. Many dissolved constituents, including metals and trace organic contaminants (TrOCs) such as hydrophilic pesticides and poly- and perfluoroalkyl substances (PFASs), are of concern due to their toxicity, persistence, prevalence in stormwater runoff, and poor removal in conventional stormwater control measures. This study explores the operational flow rate limitations of black carbon (BC)-amended engineered media filters for removal of a wide suite of dissolved metals and TrOCs and provides validation for a previously developed predictive TrOC transport model. Column experiments were conducted with face velocities of 40 and 60 cm h-1 to assess Douglas Fir-based biochar and regenerated activated carbon (RAC) filter performance in light of media-contaminant removal kinetic limitations. This study found that increasing the face velocity in BC-amended filters to 40 and 60 cm h-1, which are representative of field conditions, decreased the removal of total suspended solids, turbidity, dissolved hydrophilic TrOCs, and PFASs when expressed as volume treated relative to previous studies conducted at 20 cm h-1. Dissolved metals and hydrophobic TrOCs removal were not substantially affected by the increased flow rates. A predictive 1-d intraparticle pore diffusion-limited sorption model with sorption and effective tortuosity parameters determined previously from experiments conducted at 20 cm h-1 was validated for these higher flow rates. This work provides insights to the kinetic limitations of contaminant removal within biochar and RAC filters and implications for stormwater filter design and operation.


Asunto(s)
Filtración , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Cinética , Purificación del Agua/métodos , Carbón Orgánico/química , Lluvia , Hollín/química , Carbono/química
13.
Environ Toxicol Chem ; 43(7): 1509-1523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38860662

RESUMEN

The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente/métodos , Lagos/química , Animales
14.
Artículo en Inglés | MEDLINE | ID: mdl-38819025

RESUMEN

Discrete water samples represent a snapshot of conditions at a particular moment in time and may not represent a true chemical exposure caused by changes in chemical input, tide, flow, and precipitation. Sampling technologies have been engineered to better estimate time-weighted concentrations. In this study, we consider the utility of three integrative sampling platforms: polar organic chemical integrative sampler (POCIS), silicone bands (SBs), and continuous, low-level aquatic monitoring (CLAM). This experiment used simulated southeastern salt marsh mesocosm systems to evaluate the response of passive (POCIS, SBs) and active sampling (CLAM) devices along with discrete sampling methodologies. Three systems were assigned to each passive sampler technology. Initially, all tanks were dosed at nominal (low) bifenthrin, pyrene, and triclosan concentrations of 0.02, 2.2, and 100 µg/L, respectively. After 28 days, the same treatment systems were dosed a second time (high) with bifenthrin, pyrene, and triclosan at 0.08, 8.8, and 200 µg/L, respectively. For passive samplers, estimated water concentrations were calculated using published or laboratory-derived sampling rate constants. Chemical residues measured from SBs resulted in high/low ratios of approximately 2x, approximately 3x, and 1x for bifenthrin, pyrene, and triclosan. A similar pattern was calculated using data from POCIS samples (~4x, ~3x, ~1x). Results from this study will help users of CLAM, POCIS, and SB data to better evaluate water concentrations from sampling events that are integrated across time. Integr Environ Assess Manag 2024;00:1-12. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

15.
Environ Toxicol Chem ; 43(6): 1274-1284, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558040

RESUMEN

Tourism is one of the most important activities for the economy of Nor Patagonia Argentina. In Bariloche City, located on the shores of Lake Nahuel Huapi, both the permanent and the temporary populations have increased significantly in recent decades, and this has not necessarily been accompanied by an improvement in sewage networks. Emerging micropollutants such as pharmaceutical compounds reach aquatic systems directly, in the absence of a domestic sewage network, or through effluents from wastewater treatment plants (WWTP), which do not efficiently remove these substances and represent a major threat to the environment. Therefore, the objective of our study was to monitor the presence of pharmaceutical compounds discharged both through wastewater effluents and diffusely from housing developments into Lake Nahuel Huapi. The results obtained demonstrate the presence of pharmaceuticals in Lake Nahuel Huapi with concentrations ranging from not detectable (ND) to 110.6 ng L-1 (caffeine). The highest pharmaceutical concentration recorded in WWTP influent corresponded to caffeine (41728 ng L-1), and the lowest concentration was paracetamol (18.8 ng L-1). The removal efficiency of pharmaceuticals in the WWTP was calculated, and ranged from 0% for carbamazepine to 66% for ciprofloxacin. This antibiotic showed the lowest % of attenuation (73%) in Lake Nahuel Huapi. These results on the occurrence of a wide variety of pharmaceuticals are the first generated in Patagonia, representing a regional baseline for this type of micropollutant and valuable information for the subsequent design of removal strategies for emerging pharmaceutical pollutants in surface water. Environ Toxicol Chem 2024;43:1274-1284. © 2024 SETAC.


Asunto(s)
Monitoreo del Ambiente , Lagos , Contaminantes Químicos del Agua , Argentina , Contaminantes Químicos del Agua/análisis , Lagos/química , Preparaciones Farmacéuticas/análisis , Aguas Residuales/química
16.
Sci Total Environ ; 927: 172346, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608881

RESUMEN

Constructed wetlands (CWs) offer an efficient alternative technology for removing emerging organic contaminants (EOCs) from wastewater. Optimizing CW performance requires understanding the impact of CW configuration on EOC removal and microbial community dynamics. This study investigated EOC removal and microbial communities in horizontal subsurface flow (HSSF) CWs over a 26-month operational period. Comparison between tuff-filled and gravel-filled CWs highlighted the superior EOC removal in tuff-filled CWs during extended operation, likely caused by the larger surface area of the tuff substrate fostering microbial growth, sorption, and biodegradation. Removal of partially positively charged EOCs, like atenolol (29-98 %) and fexofenadine (21-87 %), remained constant in the different CWs, and was mainly attributed to sorption. In contrast, removal rates for polar non-sorbing compounds, including diclofenac (3-64 %), acyclovir (9-85 %), and artificial sweeteners acesulfame (5-60 %) and saccharin (1-48 %), seemed to increase over time due to enhanced biodegradation. The presence of vegetation and different planting methods (single vs. mixed plantation) had a limited impact, underscoring the dominance of substrate type in the CW performance. Microbial community analysis identified two stages: a startup phase (1-7 months) and a maturation phase (19-26 months). During this transition, highly diverse communities dominated by specific species in the early stages gave way to more evenly distributed and relatively stable communities. Proteobacteria and Bacteroidetes remained dominant throughout. Alphaproteobacteria, Acidobacteria, Planctomycetes, Salinimicrobium, and Sphingomonas were enriched during the maturation phase, potentially serving as bioindicators for EOC removal. In conclusion, this study emphasizes the pivotal role of substrate type and maturation in the removal of EOCs in HSSF CW, considering the complex interplay with EOC physicochemical properties. Insights into microbial community dynamics underscore the importance of taxonomic and functional diversity in assessing CW effectiveness. This knowledge aids in optimizing HSSF CWs for sustainable wastewater treatment, EOC removal, and ecological risk assessment, ultimately contributing to environmental protection.


Asunto(s)
Biodegradación Ambiental , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Humedales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Microbiota
17.
J Hazard Mater ; 470: 134076, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565014

RESUMEN

Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.


Asunto(s)
Antibacterianos , Biodegradación Ambiental , Ciprofloxacina , Aprendizaje Automático , Redes Neurales de la Computación , Contaminantes Químicos del Agua , Ciprofloxacina/metabolismo , Antibacterianos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cinética , Consorcios Microbianos , Bacterias/metabolismo , Bacterias/genética
18.
Water Res ; 256: 121593, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631239

RESUMEN

Organic contaminants enter aquatic ecosystems from various sources, including wastewater treatment plant effluent. Freshwater biofilms play a major role in the removal of organic contaminants from receiving water bodies, but knowledge of the molecular mechanisms driving contaminant biotransformations in complex stream biofilm (periphyton) communities remains limited. Previously, we demonstrated that biofilms in experimental flume systems grown at higher ratios of treated wastewater (WW) to stream water displayed an increased biotransformation potential for a number of organic contaminants. We identified a positive correlation between WW percentage and biofilm biotransformation rates for the widely-used insect repellent, N,N-diethyl-meta-toluamide (DEET) and a number of other wastewater-borne contaminants with hydrolyzable moieties. Here, we conducted deep shotgun sequencing of flume biofilms and identified a positive correlation between WW percentage and metagenomic read abundances of DEET hydrolase (DH) homologs. To test the causality of this association, we constructed a targeted metagenomic library of DH homologs from flume biofilms. We screened our complete metagenomic library for activity with four different substrates, including DEET, and a subset thereof with 183 WW-related organic compounds. The majority of active hydrolases in the metagenomic library preferred aliphatic and aromatic ester substrates while, remarkably, only a single reference enzyme was capable of DEET hydrolysis. Of the 626 total enzyme-substrate combinations tested, approximately 5% were active enzyme-substrate pairs. Metagenomic DH family homologs revealed a broad substrate promiscuity spanning 22 different compounds when summed across all enzymes tested. We biochemically characterized the most promiscuous and active enzymes identified based on metagenomic analysis from uncultivated Rhodospirillaceae and Planctomycetaceae. In addition to characterizing new DH family enzymes, we exemplified a framework for linking metagenome-guided hypothesis generation with experimental validation. Overall, this study expands the scope of known enzymatic contaminant biotransformations for metagenomic hydrolases from WW-receiving stream biofilm communities.


Asunto(s)
Biopelículas , Hidrolasas , Aguas Residuales , Xenobióticos , Aguas Residuales/química , Xenobióticos/metabolismo , Hidrolasas/metabolismo , Hidrolasas/genética , Contaminantes Químicos del Agua/metabolismo , Ríos , Biotransformación
19.
Chemosphere ; 356: 141946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604518

RESUMEN

End-of-life electric and electronic devices stand as one of the fastest growing wastes in the world and, therefore, a rapidly escalating global concern. A relevant fraction of these wastes corresponds to polymeric materials containing a plethora of chemical additives. Some of those additives fall within the category of hazardous organic compounds (HOCs). Despite the significant advances in the capabilities of analytical methods, the comprehensive characterization of WEEE plastic remains as a challenge. This research strives to identify the primary additives within WEEE polymers by implementing a non-target and suspect screening approach. Gas chromatography coupled to time-of-flight mass spectrometry (GC-QTOF-MS), using electron ionization (EI), was applied for the detection and identification of more than 300 substances in this matrix. A preliminary comparison was carried out with nominal resolution EI-MS spectra contained in the NIST17 library. BPA, flame retardants, UV-filters, PAHs, and preservatives were among the compounds detected. Fifty-one out of 300 compounds were confirmed by comparison with authentic standards. The study establishes a comprehensive database containing m/z ratios and accurate mass spectra of characteristic compounds, encompassing HOCs. Semi-quantification of the predominant additives was conducted across 48 WEEE samples collected from handling and dismantling facilities in Galicia. ABS plastic demonstrated the highest median concentrations, ranging from 0.154 to 4456 µg g-1, being brominated flame retardants and UV filters, the families presenting the highest concentrations. Internet router devices revealed the highest concentrations, containing a myriad of HOCs, such as tetrabromobisphenol A (TBBPA), tribromophenol (TBrP), triphenylphosphate (TPhP), tinuvin P and bisphenol A (BPA), most of which are restricted in Europe.


Asunto(s)
Residuos Electrónicos , Cromatografía de Gases y Espectrometría de Masas , Plásticos , Residuos Electrónicos/análisis , Plásticos/análisis , Plásticos/química , Retardadores de Llama/análisis , Sustancias Peligrosas/análisis , Compuestos Orgánicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Fenoles/análisis , Compuestos de Bencidrilo/análisis , Monitoreo del Ambiente/métodos , Polímeros/química , Polímeros/análisis
20.
Sci Total Environ ; 929: 172677, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663594

RESUMEN

Cigarette butts, one of the most common forms of litter in the world, represent a source of chemical and plastic pollution releasing thousands of toxic compounds and microfibers of cellulose acetate (CA). Besides the correct waste management, the recovery of CA from cigarette filters is a way to cushion their negative effects on the environment. Thus far, recycling strategies have been limited to industrial applications, while not many solutions have designed for water remediation. This work describes a strategy to valorize this harmful waste and to reverse its environmental impact, proposing a simple and effective procedure of reclamation of CA and its reuse to prepare a composite sorbent for the treatment of polluted water. The first step entails the washing of filters with hot water (T = 90 °C) and hot ethanol (T = 58-68 °C) to remove the impurities produced during cigarette burning, as verified by means of UV and attenuated total reflection-Fourier-transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The second step involves the use of the regenerated CA to prepare porous cylinder-shaped cryogels (15 mm × 10 mm) whose sorption properties are enhanced by the combination with AC (15 % w/w). The synthesis takes advantage of the sol-gel transition of the polymer dispersion (5 % w/V) in a solution acetone/water 5 mM in NH3 (60/40, v/v). After characterization by dynamic mechanical analysis (DMA), TGA, FT-IR, and scanning electron microscopy (SEM), the adsorption capability of the physical cryogel was studied in terms of treated environmental water volume, contact time and concentration of the selected pollutants. The results have shown that the proposed strategy is a low-cost way to recycle CA from cigarette butts and that the designed sorbent is a promising material for water treatment, allowing quick removal times and yields >79.6 %.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA