Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 754, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135062

RESUMEN

BACKGROUND: Organoids are approved by the US FDA as an alternative to animal experiments to guide drug development and for sensitivity screening. Stable organoids models of gastric cancer are desirable for personalized medicine and drug screening. METHODS: Tumor tissues from a primary cancer of the stomach and metastatic cancer of the lymph node were collected for 3D culture. By long-term culture for over 50 generations in vitro, we obtained stably growing organoid lines. We analyzed short tandem repeats (STRs) and karyotypes of cancer cells, and tumorigenesis of the organoids in nude mice, as well as multi-omics profiles of the organoids. A CCK8 method was used to determine the drugs sensitivity to fluorouracil (5-Fu), platinum and paclitaxel. RESULTS: Paired organoid lines from primary cancer (SPDO1P) and metastatic lymph node (SPDO1LM) were established with unique STRs and karyotypes. The organoid lines resulted in tumorigenesis in vivo and had clear genetic profiles. Compared to SPDO1P from primary cancer, upregulated genes of SPDO1LM from the metastatic lymph node were enriched in pathways of epithelial-mesenchymal transition and angiogenesis with stronger abilities of cell migration, invasion, and pro-angiogenesis. Based on drug sensitivity analysis, the SOX regimen (5-Fu plus oxaliplatin) was used for chemotherapy with an optimal clinical outcome. CONCLUSIONS: The organoid lines recapitulate the drug sensitivity of the parental tissues. The paired organoid lines present a step-change toward living biobanks for further translational usage.


Asunto(s)
Metástasis Linfática , Ratones Desnudos , Organoides , Medicina de Precisión , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamiento farmacológico , Organoides/efectos de los fármacos , Organoides/patología , Humanos , Animales , Metástasis Linfática/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Carcinogénesis/patología , Carcinogénesis/genética , Carcinogénesis/efectos de los fármacos , Ratones , Repeticiones de Microsatélite/genética
2.
Pathogens ; 13(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39057782

RESUMEN

Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.

3.
Life Sci ; 352: 122873, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950643

RESUMEN

Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Sepsis , Lesión Renal Aguda/etiología , Sepsis/complicaciones , Animales , Humanos
4.
Stem Cell Rev Rep ; 20(6): 1441-1458, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38758462

RESUMEN

Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.


Asunto(s)
Enfermedades Gastrointestinales , Organoides , Humanos , Organoides/metabolismo , Enfermedades Gastrointestinales/patología , Enfermedades Gastrointestinales/terapia , Enfermedades Gastrointestinales/metabolismo , Investigación Biomédica Traslacional , Animales , Investigación Biomédica , Edición Génica/métodos , Modelos Biológicos
5.
Cell Rep Methods ; 4(1): 100686, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38218190

RESUMEN

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.


Asunto(s)
Corteza Cerebral , Neuronas , Neuronas/fisiología , Organoides/fisiología , Encéfalo , Neurotransmisores
6.
Bioorg Chem ; 143: 107094, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199139

RESUMEN

Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.


Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Tubulina (Proteína) , Animales , Humanos , Ratones , Amidas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Microtúbulos/metabolismo , Mitosis , Tubulina (Proteína)/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
7.
Water Res ; 249: 121007, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096726

RESUMEN

Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Humanos , Éteres Difenilos Halogenados/toxicidad , Retardadores de Llama/toxicidad
8.
Artículo en Inglés | MEDLINE | ID: mdl-37997804

RESUMEN

BACKGROUND: Patient-derived organoids (PDOs) are ex vivo models that retain the functions and characteristics of individualized source tissues, including a simulated tumor microenvironment. However, the potential impact of undiscovered differences between tissue sources on PDO growth and progression remains unclear. OBJECTIVE: This study aimed to compare the growth and condition of PDO models originating from surgical resection and colonoscopy and to provide practical insights for PDO studies. METHODS: Tissue samples and relevant patient clinical information were collected to establish organoid models. PDOs were derived from both surgical and colonoscopy tissues. The growth of the organoids, including their state, size, and success rate of establishment, was recorded and analyzed. The activity of the organoids at the end stage of growth was detected using calcein-AM fluorescence staining. RESULTS: The results showed that the early growth phase of 2/3 colonoscopy-derived organoids was faster compared to surgical PDOs, with a growth difference observed within 11-13 days of establishment. However, colonoscopy-derived organoids exhibited a diminished growth trend after this time. There were no significant differences observed in the terminal area and quantity between the two types of tissue-derived organoids. Immunofluorescence assays of the PDOs revealed that the surgical PDOs possessed a denser cell mass with relatively higher viability than colonoscopy-derived PDOs. CONCLUSION: In the establishment of colorectal patient-derived organoids, surgically derived organoids require a slightly longer establishment period, while colonoscopy-derived organoids should be passaged prior to growth inhibition to preserve organoid viability.

10.
Cell Stem Cell ; 30(10): 1382-1391.e5, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673072

RESUMEN

Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.


Asunto(s)
Células Ependimogliales , Neurogénesis , Humanos , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Corteza Cerebral , Interneuronas/fisiología
11.
Int J Pharm ; 644: 123313, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37579828

RESUMEN

Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.


Asunto(s)
Bioimpresión , Investigación Farmacéutica , Humanos , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Tecnología , Organoides , Andamios del Tejido
12.
Cell Biosci ; 13(1): 137, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501215

RESUMEN

The blood-brain barrier (BBB) is a sophisticated structure whose full functionality is required for maintaining the executive functions of the central nervous system (CNS). Tight control of transport across the barrier means that most drugs, particularly large size, which includes powerful biologicals, cannot reach their targets in the brain. Notwithstanding the remarkable advances in characterizing the cellular nature of the BBB and consequences of BBB dysfunction in pathology (brain metastasis, neurological diseases), it remains challenging to deliver drugs to the CNS. Herein, we outline the basic architecture and key molecular constituents of the BBB. In addition, we review the current status of approaches that are being explored to temporarily open the BBB in order to allow accumulation of therapeutics in the CNS. Undoubtedly, the major concern in field is whether it is possible to open the BBB in a meaningful way without causing negative consequences. In this context, we have also listed few other important key considerations that can improve our understanding about the dynamics of the BBB.

13.
bioRxiv ; 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37333351

RESUMEN

Precise modulation of brain activity is fundamental for the proper establishment and maturation of the cerebral cortex. To this end, cortical organoids are promising tools to study circuit formation and the underpinnings of neurodevelopmental disease. However, the ability to manipulate neuronal activity with high temporal resolution in brain organoids remains limited. To overcome this challenge, we introduce a bioelectronic approach to control cortical organoid activity with the selective delivery of ions and neurotransmitters. Using this approach, we sequentially increased and decreased neuronal activity in brain organoids with the bioelectronic delivery of potassium ions (K+) and γ-aminobutyric acid (GABA), respectively, while simultaneously monitoring network activity. This works highlights bioelectronic ion pumps as tools for high-resolution temporal control of brain organoid activity toward precise pharmacological studies that can improve our understanding of neuronal function.

14.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188913, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182666

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Transducción de Señal , Microambiente Tumoral
15.
Curr Opin Neurobiol ; 80: 102710, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003107

RESUMEN

Comparative studies of hominids have long sought to identify mutational events that shaped the evolution of the human nervous system. However, functional genetic differences are outnumbered by millions of nearly neutral mutations, and the developmental mechanisms underlying human nervous system specializations are difficult to model and incompletely understood. Candidate-gene studies have attempted to map select human-specific genetic differences to neurodevelopmental functions, but it remains unclear how to contextualize the relative effects of genes that are investigated independently. Considering these limitations, we discuss scalable approaches for probing the functional contributions of human-specific genetic differences. We propose that a systems-level view will enable a more quantitative and integrative understanding of the genetic, molecular and cellular underpinnings of human nervous system evolution.


Asunto(s)
Encéfalo , Sistema Nervioso , Humanos , Encéfalo/fisiología , Evolución Biológica
16.
Biomater Res ; 27(1): 18, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36855173

RESUMEN

BACKGROUND: Natural products can serve as one of the alternatives, exhibiting high potential for the treatment and prevention of COVID-19, caused by SARS-CoV-2. Herein, we report a screening platform to test the antiviral efficacy of a natural product library against SARS-CoV-2 and verify their activity using lung organoids. METHODS: Since SARS-CoV-2 is classified as a risk group 3 pathogen, the drug screening assay must be performed in a biosafety level 3 (BSL-3) laboratory. To circumvent this limitation, pseudotyped viruses (PVs) have been developed as replacements for the live SARS-CoV-2. We developed PVs containing spikes from Delta and Omicron variants of SARS-CoV-2 and improved the infection in an angiotensin-converting enzyme 2 (ACE2)-dependent manner. Human induced pluripotent stem cells (hiPSCs) derived lung organoids were generated to test the SARS-CoV-2 therapeutic efficacy of natural products. RESULTS: Flavonoids from our natural product library had strong antiviral activity against the Delta- or Omicron-spike-containing PVs without affecting cell viability. We aimed to develop strategies to discover the dual function of either inhibiting infection at the beginning of the infection cycle or reducing spike stability following SARS-CoV-2 infection. When lung cells are already infected with the virus, the active flavonoids induced the degradation of the spike protein and exerted anti-inflammatory effects. Further experiments confirmed that the active flavonoids had strong antiviral activity in lung organoid models. CONCLUSION: This screening platform will open new paths by providing a promising standard system for discovering novel drug leads against SARS-CoV-2 and help develop promising candidates for clinical investigation as potential therapeutics for COVID-19.

17.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36361956

RESUMEN

In vitro models of corticogenesis from pluripotent stem cells (PSCs) have greatly improved our understanding of human brain development and disease. Among these, 3D cortical organoid systems are able to recapitulate some aspects of in vivo cytoarchitecture of the developing cortex. Here, we tested three cortical organoid protocols for brain regional identity, cell type specificity and neuronal maturation. Overall, all protocols gave rise to organoids that displayed a time-dependent expression of neuronal maturation genes such as those involved in the establishment of synapses and neuronal function. Comparatively, guided differentiation methods without WNT activation generated the highest degree of cortical regional identity, whereas default conditions produced the broadest range of cell types such as neurons, astrocytes and hematopoietic-lineage-derived microglia cells. These results suggest that cortical organoid models produce diverse outcomes of brain regional identity and cell type specificity and emphasize the importance of selecting the correct model for the right application.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Neuronas/metabolismo , Encéfalo
18.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858406

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Asunto(s)
Astrocitos , Corteza Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima Convertidora de Angiotensina 2/metabolismo , Astrocitos/enzimología , Astrocitos/virología , Corteza Cerebral/virología , Humanos , Organoides/virología , Cultivo Primario de Células , SARS-CoV-2/fisiología
19.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163210

RESUMEN

Doxorubicin is widely used in the treatment of different cancers, and its side effects can be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored. This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were selected based on physiologically based pharmacokinetic model simulations of treatment regimens recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant differences between colon and SI organoids were evident, particularly in essential metabolic pathways. Short time-series expression miner was used to further explore temporal changes in gene profiles, which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment. This study provides new insight into doxorubicin-induced effects on the gene expression levels in the intestines. Currently, we are exploring the potential use of these data in establishing quantitative systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.


Asunto(s)
Doxorrubicina/toxicidad , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Colon/efectos de los fármacos , Doxorrubicina/farmacología , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Intestino Delgado/efectos de los fármacos , Modelos Biológicos , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Proteómica , Transcriptoma/genética
20.
Stem Cell Res Ther ; 13(1): 9, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012650

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory coronavirus 2 is currently spreading throughout the world with a high rate of infection and mortality and poses a huge threat to global public health. COVID-19 primarily manifests as hypoxic respiratory failure and acute respiratory distress syndrome, which can lead to multiple organ failure. Despite advances in the supportive care approaches, there is still a lack of clinically effective therapies, and there is an urgent need to develop novel strategies to fight this disease. Currently, stem cell therapy and stem cell-derived organoid models have received extensive attention as a new treatment and research method for COVID-19. Here, we discuss how stem cells play a role in the battle against COVID-19 and present a systematic review and prospective of the study on stem cell treatment and organoid models of COVID-19, which provides a reference for the effective control of the COVID-19 pandemic worldwide.


Asunto(s)
COVID-19 , Pandemias , Humanos , Estudios Prospectivos , SARS-CoV-2 , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA