Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Phytother Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235753

RESUMEN

Chronic intestinal inflammation and neo-angiogenesis are interconnected in colorectal carcinoma (CRC) pathogenesis. Molecules reducing inflammation and angiogenesis hold promise for CRC prevention and treatment. N-Palmitoyl-d-glucosamine (PGA), a natural glycolipid analog with anti-inflammatory properties, has shown efficacy against acute colitis. Micronized PGA (mPGA) formulations exhibit superior anti-inflammatory activity. This study investigates the in vivo anti-angiogenic and protective effects of mPGA in a mouse model of colitis-associated CRC induced by azoxymethane/dextran sodium sulfate (AOM/DSS). CRC was induced in C57BL/6J mice using intraperitoneal azoxymethane followed by three cycles of 2.5% dextran sodium sulfate (DSS) in drinking water. Mice were treated with mPGA (30-150 mg/kg) with or without the PPARα inhibitor MK886 (10 mg/kg). At Day 70 post-azoxymethane injection, mice underwent anesthetized endoscopic colon evaluation. Post-mortem analysis of tumorigenesis and angiogenesis was performed using histological, immunohistochemical, and immunoblotting techniques. mPGA improved disease progression and survival rates in a dose- and PPARα-dependent manner in AOM/DSS-exposed mice. It reduced polyp formation, decreased pro-angiogenic CD31, pro-proliferative Ki67, and pro-inflammatory TLR4 expression levels, and inhibited VEGF and MMP-9 secretion by disrupting the pAkt/mTOR/HIF1α pathway. mPGA increased colon PEA levels, restoring anti-tumoral PPARα and wtp53 protein expression. Given its lack of toxicity, mPGA shows potential as a nutritional intervention to counteract inflammation-related angiogenesis in CRC.

2.
Cell Biochem Funct ; 42(7): e4117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243192

RESUMEN

Elevated circulating branched-chain amino acids (BCAA) have been linked with the severity of insulin resistance across numerous populations, implicating heightened BCAA metabolism as a potential therapy for insulin resistance. Recently, the angiotensin II type 1 receptor (AT1R) inhibitor Valsartan (VAL) was identified as a potent inhibitor of branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), a negative regulator of BCAA metabolism. This work investigated the effect of VAL on myotube metabolism and insulin sensitivity under both insulin sensitive and insulin resistant conditions. C2C12 myotubes were treated with or without VAL at 8 µM for 24 h, both with and without hyperinsulinemic-induced insulin resistance. Oxygen consumption and extracellular acidification were used to measure mitochondrial and glycolytic metabolism, respectively. Gene expression was assessed via qRT-PCR, and insulin sensitivity was assessed via Western blot. Insulin resistance significantly reduced both basal and peak mitochondrial function which were rescued to control levels by concurrent VAL. Changes in mitochondrial function occurred without substantial changes in mitochondrial content or related gene expression. Insulin sensitivity and glycolytic metabolism were unaffected by VAL, as was lipogenic signaling and lipid content. Additionally, both VAL and insulin resistance depressed Bckdha expression. Interestingly, an interaction effect was observed for extracellular isoleucine, valine, and total BCAA (but not leucine), suggesting VAL may alter BCAA utilization in an insulin sensitivity-dependent manner. Insulin resistance appears to suppress mitochondrial function in a myotube model which can be rescued by VAL. Further research will be required to explore the implications of these findings in more complex models.


Asunto(s)
Resistencia a la Insulina , Mitocondrias , Fibras Musculares Esqueléticas , Valsartán , Valsartán/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/farmacología
3.
Am J Transl Res ; 16(8): 3557-3571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39262708

RESUMEN

OBJECTIVE: To investigate the effects of ligustrazine on neuropathic pain (NPP) in rats with sciatic nerve injury and to provide new scientific insight for broadening the clinical application of ligustrazine. METHODS: Human spinal cord cell line STR cells were transfected with TLR4-mimic or mimic negative control (mimic-NC). After transfection, the STR cells were treated with different concentrations of ligustrazine (0, 0.25, 0.5, 1, 2 µm) for 24 h or 48 h. Cell proliferation was detected by MTT assay and colony formation assay. A rat model was further constructed to evaluate mechanical and cold pain sensitivity behaviors by fiber mechanical stimulation and freezing spray. The extracellular fluids of medial prefrontal cortex (mPFC) and central amygdala (CeA) were collected by intracranial dual-site simultaneous microdialysis. The contents of glutamic acid (Glu), aspartate (Asp), glycine (Gly), and γ-aminobutyric acid (GABA) in extracellular fluids were detected by HPLC. RESULTS: Compared to the 0 µm group, ligustrazine concentration at 0.5 µm significantly decreased the relative cell viability of STR cells and promoted the cell apoptosis rate. Ligustrazine at 0.25 µm significantly reduced the colony number of STR cells (all P<0.05). Compared to the control group, 1 µM ligustrazine significantly increased the protein expression of Bax and cleaved caspase 3 in STR cells but decreased the protein expression of Bcl-2 (all P<0.001). Compared to the control group, 2 µM ligustrazine treatments significantly reduced the protein levels of TLR4 and p-Akt in STR cells (all P<0.001). However, 2 µM ligustrazine treatments did not change the protein expression of Akt (P>0.05). Compared to the control group, the level of TLR4 in STR cells transfected with TLR4-mimic was significantly increased (P<0.001). Compared to the control group, transfection of TLR4-mimic reversed the anti-proliferative and pro-apoptotic effects of ligustrazine on STR cells (all P<0.001). CONCLUSION: The analgesic effect of Ligustrazine on neuropathic pain caused by spinal cord injury may be related to its inhibition of the release of excitatory amino acid transmitters Glu and Gly through the TLR4/NF-κB pathway, regulation of the dynamic balance of excitatory and inhibitory amino acid neurotransmitters, and alleviation of the central sensitization effect caused by the excitotoxicity of Glu.

4.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273216

RESUMEN

Galectins have the potential to interact with transmembrane glycoproteins to modulate their functions. Since galectin-1 interacts with PDGF-Rß, we analyzed the effect of galectin-1 on PDGF-BB-mediated AKT signaling in primary human retinal pigment epithelial (RPE) cells and galectin-1-deficient immortalized human RPE cells (LGALS1-/-/ARPE-19) following incubation with PDGF-BB and galectin-1. Expression and localization of galectin-1, PDGF-Rß and pAKT were investigated using western blot analysis and immunohistochemical staining. Cell proliferation of RPE cells was analyzed using BrdU ELISA. Following treatment of human RPE cells with human recombinant (hr)-galectin-1 and PDGF-BB, an intense clustering of PDGF-Rß and colocalization with galectin-1 were detected. By Western blot analysis and immunocytochemistry of human RPE cells, an enhanced PDGF-BB-mediated expression of pAKT was observed, which was substantially reduced by additional incubation with hr-galectin-1. Vice versa, in LGALS1-/-/ARPE-19 cells, the PDGF-BB-induced pAKT signal was enhanced compared to wild-type cells. Furthermore, a decreased expression of PDGF-Rß in human RPE cells was observed after treatment with PDGF-BB and hr-galectin-1, while in untreated LGALS1-/-/ARPE-19 cells, its constitutive expression was increased. In addition, after treatment of RPE cells with hr-galectin-1, the PDGF-BB-induced proliferation was markedly reduced. In summary, galectin-1 has the distinct potential to reduce PDGF-mediated pAKT signaling and proliferation in human RPE cells-an effect that is most likely facilitated via a decreased expression of PDGF-Rß.


Asunto(s)
Becaplermina , Proliferación Celular , Galectina 1 , Proteínas Proto-Oncogénicas c-akt , Epitelio Pigmentado de la Retina , Transducción de Señal , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Becaplermina/metabolismo , Becaplermina/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Línea Celular , Células Epiteliales/metabolismo
5.
Immunol Invest ; : 1-18, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258628

RESUMEN

INTRODUCTION: Novel treatments are being researched to develop more safe and effective protective medications for anaphylaxis. Camel whey protein (CWP) and baicalein (BAC, one of the major flavones) have multiple beneficial properties including anti-inflammatory and antioxidant activities. METHODS: The current study investigated/compared the therapeutic protection of repeated intragastric administration of CWP (100 mg/kg body weight, as an animal extract) and BAC (10 mg/kg body weight, as a plant extract), before the challenge with ovalbumin (OVA) or receiving the compound 48/80 (C48/80), against mice models for IgE-independent and dependent anaphylaxes. Besides, their effects on mast cells (MCs) downstream cell signaling were explored. RESULTS: The results revealed that CWP and BAC reduced the mortality rate, as compared with a MCs stabilizer "sulfasalazine (SSZ, 100 mg/kg body weight, intraperitoneally)," in both mice models. Furthermore, they prevented the MCs degranulation and significantly reduced (p < .05) lung tissue levels of cell signaling (p-AKT, p-ERK, and p-IκBα). Additionally, they decreased histamine, tryptase, leukotriene C4, prostaglandin D2, interleukin (IL)-4, and IL-10 levels in broncho-alveolar and peritoneal lavages in systemic anaphylaxis mice models. They also restored the stabilization of peritoneal MCs membrane in inverted light microscopy results accompanied by amelioration of the lung histology. DISCUSSION: The present study provided evidence for the protective therapeutic effect of CWP and BAC against anaphylaxis. As a result, CWP and BAC may be used as preventative supplemented regimens for both non-vegetarian and vegetarian consumers to treat allergy through downregulation of MCs signal transduction pathways, and hence controlling the production of inflammatory mediators.

6.
Phytomedicine ; 133: 155944, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146879

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) remains a significant challenge in cancer therapy, especially due to its resistance to established treatments like Gemcitabine, necessitating novel therapeutic approaches. METHODS: This study utilized Gemcitabine-resistant cell lines, patient-derived organotypic tumor spheroids (PDOTs), and patient-derived xenografts (PDX) to evaluate the effects of Saikosaponin-a (SSA) on ICC cellular proliferation, migration, apoptosis, and its potential synergistic interaction with Gemcitabine. Techniques such as transcriptome sequencing, Luciferase reporter assays, and molecular docking were employed to unravel the molecular mechanisms. RESULTS: SSA exhibited antitumor effects in both in vitro and PDX models, indicating its considerable potential for ICC treatment. SSA markedly inhibited ICC progression by reducing cellular proliferation, enhancing apoptosis, and decreasing migration and invasion. Crucially, it augmented Gemcitabine's efficacy by targeting the p-AKT/BCL6/ABCA1 signaling pathway. This modulation led to the downregulation of p-AKT and suppression of BCL6 transcriptional activity, ultimately reducing ABCA1 expression and enhancing chemosensitivity to Gemcitabine. Additionally, ABCA1 was validated as a predictive biomarker for drug resistance, with a direct correlation between ABCA1 expression levels and the IC50 values of various small molecule drugs in ICC gene profiles. CONCLUSION: This study highlights the synergistic potential of SSA combined with Gemcitabine in enhancing therapeutic efficacy against ICC and identifies ABCA1 as a key biomarker for drug responsiveness. Furthermore, the introduction of the novel PDOTs microfluidic model provides enhanced insights into ICC research. This combination strategy may provide a novel approach to overcoming treatment challenges in ICC.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Ácido Oleanólico , Proteínas Proto-Oncogénicas c-akt , Saponinas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Colangiocarcinoma/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP/metabolismo , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int Immunopharmacol ; 141: 112931, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146781

RESUMEN

Uterine inflammation affects 8% of women in the United States and 32% in developing nations, often caused by uncontrolled inflammation and oxidative stress. This condition significantly impacts women's health, productivity, and quality of life, and increases the risk of related morbidities leading to higher healthcare costs. Research now focuses on natural antioxidants and anti-inflammatory, particularly berberine (BBR), an isoquinoline alkaloid known for its antioxidant, anti-inflammatory, and antiapoptotic activities. The present study sought to examine the potential therapeutic efficacy of BBR against uterine inflammation induced by the intrauterine infusion of an iodine (I2) mixture in an experimental setting. Female Sprague Dawley rats (n = 6) were divided into five groups, control, sham, I2, I2 and BBR 10 mg/kg, and I2 and BBR 25 mg/kg-treated groups. Compared to I2 infusion, BBR treatment effectively restored normal uterine histopathology and reduced inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor- kappa B (NF-κB), monocyte chemoattractant protein 1 (MCP1), and myeloperoxidase (MPO). It lowered oxidative markers like malondialdehyde (MDA), and increased antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). It balanced apoptotic genes by upregulating B-cell lymphoma 2 (Bcl-2) and downregulating Bcl-2-associated X protein (Bax). Furthermore, BBR reduced the expression of Toll-like receptor 2 (TLR-2), phosphorylated phosphatidylinositol 3­kinase (p-PI3K), and phosphorylated protein kinase B (p-AKT) in the rats treated with intrauterine I2. Ultimately, the therapeutic benefits of BBR can be attributed, to some extent, to its antioxidant, anti-inflammatory, and antiapoptotic properties, in addition to its ability to modulate the TLR-2/p-PI3K/p-AKT axis.


Asunto(s)
Antiinflamatorios , Berberina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 2 , Útero , Animales , Femenino , Berberina/farmacología , Berberina/uso terapéutico , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Útero/efectos de los fármacos , Útero/patología , Útero/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Citocinas/metabolismo , Inflamación/tratamiento farmacológico
8.
Neurosci Lett ; 837: 137923, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39106918

RESUMEN

Caffeine, a nonselective adenosine receptor antagonist, is the major component of coffee and the most consumed psychostimulant at nontoxic doses in the world. It has been identified that caffeine consumption reduces the risk of several neurological diseases. However, the mechanisms by which it impacts the pathophysiology of neurological diseases remain to be elucidated. In this study, we investigated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation and depression in vivo and explored the potential mechanism of caffeine through LPS-induced brain injury. Adult male Sprague-Dawley (SD) rats were intraperitoneal injected with various concentrations of LPS to induce the neuroinflammation and depressive-like behavior. Then SD rats were treated with caffeine in the presence or absence of LPS. Open-filed and closed-field tests were applied to detect the behaviors of SD rats, while western blot was performed to measure the phosphorylation level of protein kinase B (p-AKT) and nuclear factor κB (NF-κB) in the cortex after caffeine was orally administered. Our findings indicated that caffeine markedly improved the neuroinflammation and depressive-like behavior of LPS-treated SD rats. Mechanistic investigations demonstrated that caffeine down-regulated the expression of p-AKT and NF-κB in LPS-induced SD rats cortex. Taken together, these results indicated that caffeine, a potential agent for preventing inflammatory diseases, may suppress LPS-induced inflammatory and depressive responses by regulating AKT phosphorylation and NF-κB.


Asunto(s)
Cafeína , Depresión , Lipopolisacáridos , FN-kappa B , Enfermedades Neuroinflamatorias , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Animales , FN-kappa B/metabolismo , Masculino , Cafeína/farmacología , Cafeína/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Depresión/tratamiento farmacológico , Depresión/inducido químicamente , Depresión/metabolismo , Ratas , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Fosforilación/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente
9.
J Obstet Gynaecol ; 44(1): 2361435, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39007780

RESUMEN

BACKGROUND: Prognostic factors-based nomograms have been utilised to detect the likelihood of the specific cancer events. We have focused on the roles of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the prognosis of BC patients. This study was designed to establish nomograms based on the integration of aldehyde dehydrogenase 1 (ALDH1) and p-AKT in predicting the disease-free survival (DFS) and overall survival (OS) of breast cancer (BC) patients. METHODS: Demographic and clinical data were obtained from BC patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses were utilised to analyse the risk factors of recurrence and mortality. The nomograms for predicting the DFS and OS were established using the screened risk factors. Stratified analysis was performed with the cut-off value of exp (pi) of 4.0-fold in DFS and OS, respectively. RESULTS: Multivariate Cox regression analysis indicated that ALDH, p-AKT and pathological stage III were independent risk factors for the recurrence among BC patients. ALDH1, p-AKT, pathological stage III and ER-/PR-/HER2- were independent risk factors for the mortality among BC patients. The established nomograms based on these factors were effective for predicting the DFS and OS with good agreement to the calibration curve and acceptable area under the receiver operating characteristic (ROC) curve. Finally, stratified analyses showed patients with a low pi showed significant decrease in the DFS and OS compared with those of high risk. CONCLUSION: We established nomograms for predicting the DFS and OS of BC patients based on ALDH1, p-AKT and pathological stages. The ER-/PR-/HER2- may be utilised to predict the OS rather than DFS in the BC patients.


Many breast cancer patients show poor response after treatment due to recurrence and metastasis. Therefore, early prediction of the disease-free survival and overall survival is crucial to the treatment outcome and clinical decision-making. In this study, we established nomograms with the demographic and clinical data from breast cancer patients admitted to our hospital between September 2015 and August 2016. Univariate and multivariate Cox regression analyses showed that some important proteins and signalling pathways were risk factors for decreased disease-free survival and overall survival of breast cancer patients. On this basis, we established an effective nomogram for predicting the disease-free survival and overall survival of these patients based on these factors. This study offers new options in the predicting the treatment outcome of breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Nomogramas , Humanos , Femenino , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Persona de Mediana Edad , Supervivencia sin Enfermedad , Adulto , Factores de Riesgo , Familia de Aldehído Deshidrogenasa 1/metabolismo , Recurrencia Local de Neoplasia , Anciano , Estadificación de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estudios Retrospectivos , Modelos de Riesgos Proporcionales , Biomarcadores de Tumor/metabolismo
10.
Cancer Genomics Proteomics ; 21(4): 368-379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38944420

RESUMEN

BACKGROUND/AIM: Aggressive breast cancer (BC) cells show high expression of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. In breast cancer cells in which mesenchymal transformation was induced, ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression increased significantly. Therefore, we investigated whether there is a correlation between expression of ARHGAP29 and tumor progression in BC. Since tamoxifen-resistant BC cells exhibit increased mesenchymal properties and invasiveness, we additionally investigated the relationship between ARHGAP29 and increased invasion rate in tamoxifen resistance. The question arises as to whether ARHGAP29 is a suitable prognostic marker for the progression of BC. MATERIALS AND METHODS: Tissue microarrays were used to investigate expression of ARHGAP29 in BC and adjacent normal breast tissues. Knockdown experiments using siRNA were performed to investigate the influence of ARHGAP29 and the possible downstream actors RhoC and pAKT1 on invasive growth of tamoxifen-resistant BC spheroids in vitro. RESULTS: Expression of ARHGAP29 was frequently increased in BC tissues compared to adjacent normal breast tissues. In addition, there was evidence of a correlation between high ARHGAP29 expression and advanced clinical tumor stage. Tamoxifen-resistant BC cells show a significantly higher expression of ARHGAP29 compared to their parental wild-type cells. After knockdown of ARHGAP29 in tamoxifen-resistant BC cells, expression of RhoC was significantly reduced. Further, expression of pAKT1 decreased significantly. Invasive growth of three-dimensional tamoxifen-resistant BC spheroids was reduced after knockdown of ARHGAP29. This could be partially reversed by AKT1 activator SC79. CONCLUSION: Expression of ARHGAP29 correlates with the clinical tumor parameters of BC patients. In addition, ARHGAP29 is involved in increased invasiveness of tamoxifen-resistant BC cells. ARHGAP29 alone or in combination with its downstream partners RhoC and pAKT1 could be suitable prognostic markers for BC progression.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Proteínas Activadoras de GTPasa , Invasividad Neoplásica , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Pronóstico , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proteína rhoC de Unión a GTP/metabolismo , Proteína rhoC de Unión a GTP/genética
11.
Drug Dev Res ; 85(4): e22212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38798193

RESUMEN

AKT is one of the overexpressed targets in nonsmall cell lung cancer (NSCLC) and plays an important role in its progression and offers an attractive target for the therapy. The PI3K/AKT/mTOR pathway is upregulated in NSCLC. Acridone is an important heterocycle compound which treats cancer through various mechanisms including AKT as a target. In the present work, the study was designed to evaluate the safety profile of three acridone derivatives (AC-2, AC-7, and AC-26) by acute and repeated dose oral toxicity. In addition to this, we also checked the pAKT overexpression and its control by these derivatives in tumor xenograft model. The results from acute and repeated dose toxicity showed these compounds to be highly safe and free from any toxicity, mortality, or significant alteration in body weight, food, and water intake in the rats. In the repeated dose toxicity, compounds showed negligible variations in a few hematological parameters at 400 mg/kg. The histopathology, biochemical, and urine parameters remained unchanged. The xenograft model study demonstrated AC-2 to be inhibiting HOP-62 induced tumor via reduction in p-AKT1 (Ser473) expression significantly. In immunofluorescence staining AC-2 treated tissue section showed 2.5 fold reduction in the expression of p-AKT1 (Ser473). Histopathology studies showed the destruction of tumor cells with increased necrosis after treatment. The study concluded that AC-2 causes cell necrosis in tumor cells via blocking the p-AKT1 expression. The findings may provide a strong basis for further clinical applications of acridone derivatives in NSCLC.


Asunto(s)
Acridonas , Antineoplásicos , Neoplasias Pulmonares , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Acridonas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Humanos , Masculino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratones Desnudos , Línea Celular Tumoral , Ratas Sprague-Dawley , Femenino
12.
Int Immunopharmacol ; 135: 112294, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38776856

RESUMEN

Diabetic nephropathy (DN) is the most frequent and serious complication of type 2 diabetes (T2DM). Lack of a precise remedy and socio-economic burden of DN patients implements searching about alternative therapies. This study aims to evaluate the possible beneficial effect of alpha-lipoic acid (α-LA) alone or in combination with metformin (Met) in ameliorating STZ/High fat diet (HFD)-induced DN. T2DM was induced via HFD administration for 15 weeks and single ip injection of STZ (35 mg/kg) at week 7. Male Sprague-Dawley rats were randomly grouped as follows: control group, STZ/HFD-induced DN, Met/T; daily treated with 150 mg/kg Met, α-LA/T group; daily treated with 100 mg/kg α-LA, and Met/T + α-LA/T group; daily treated with Met and α-LA at same doses. Administration of Met and α-LA succeeded in attenuating STZ/HFD-induced DN as manifested by significant decrease in kidney weight as well as renal and cardiac hypertrophy index. Moreover, Met and α-LA improved glycemic control, kidney functions and lipid profile as well as restored redox balance. Additionally, Met and α-LA administration significantly upregulated PTEN level accompanied by significant downregulation in renal p-AKT and miR-29a levels. Histopathologically, Met and α-LA administration mitigated STZ/HFD-induced histopathological alterations in kidney and heart. Moreover, immunohistochemical examination revealed a significant decrease in renal YAP, collagen I and Ki-67. Taken together, these observations revealed that Met and α-LA administration could protect against STZ/HFD-induced DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Metformina , MicroARNs , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Ácido Tióctico , Proteínas Señalizadoras YAP , Animales , Ácido Tióctico/uso terapéutico , Ácido Tióctico/farmacología , Metformina/farmacología , Metformina/uso terapéutico , Masculino , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , MicroARNs/metabolismo , MicroARNs/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Quimioterapia Combinada , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Estreptozocina
13.
Cureus ; 16(2): e53884, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38465160

RESUMEN

BACKGROUND: Colorectal cancer (CRC) research has identified a consistent loss of PTEN expression in both primary tumors and metastasis, highlighting its potential role in this disease. However, the impact of PTEN on downstream proteins of KRAS mutation, namely p-AKT, p-ERK, and p65 (NFkB), remains unknown. This study aims to explore the inhibitory effect of PTEN on KRAS downstream proteins and its correlation with pathological features in CRC patients. METHODS: From January 1, 2015, to December 31, 2021, 86 CRC cases were collected from governmental and private laboratories in the Duhok province. Formalin-fixed, paraffin-embedded tissue blocks were obtained, and the study involved histopathological analysis, immunohistochemistry of PTEN, AKT, ERK, and P65 markers, and molecular analysis of the KRAS gene. RESULTS: Among the 86 cases, there were 46 males (53.5%) and 40 females (46.5%), with an equal distribution between right colon and left colon/rectum. Tumors larger than 5cm were observed in 47 cases, predominantly displaying a polypoid or ulcerated growth pattern. Most cases were moderately differentiated adenocarcinomas, with stages II and III being the most prevalent 31 cases (36%) and 34 cases (39.5%) respectively. Significant associations were found between PTEN, ERK expressions, and tumor location in the right colon (P=0.031 and P=0.009 respectively). Tumor size correlated with P65 expression (P=0.042). KRAS mutation showed a positive relationship with the type of tumor growth (P=0.035). Tumor grade increased with KRAS mutations (P=0.043). PTEN expression correlated significantly with ERK and AKT markers (P=0.018 and 0.035 respectively). P65 exhibited an association with KRAS mutation (P=0.034). CONCLUSION: The study revealed PTEN expression in association with the inhibition of AKT and ERK, and the absence of KRAS gene mutation. Conversely, PTEN is not expressed with the positively reactive P65 and the presence of KRAS mutation. This study contributes valuable insights into the complex interplay between PTEN expression, KRAS mutation, and downstream signaling pathways in CRC. It suggests potential avenues for further research and therapeutic strategies in the context of CRC treatment.

14.
J Toxicol Environ Health A ; 87(10): 428-435, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38551404

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease associated with long non-coding RNAs and DNA methylation; however, the mechanisms underlying the role of lncRNA small nucleolar RNA host gene 1 (lncRNA SNHG1) and subsequent involvement of DNA methylation in AD development are not known. The aim of this study was to examine the regulatory mechanisms attributed to lncRNA SNHG1 gene utilizing 2 strains of senescence-accelerated mouse prone 8 (SAMP8) model of AD and compared to senescence-accelerated mouse resistant (SAMR) considered a control. Both strains of the mouse were transfected with either blank virus, psLenti-U6-SNHG1(low gene expression) virus, and psLenti-pA-SNHG1(gene overexpression) virus via a single injection into the brains for 2 weeks. At 2 weeks mice were subjected to a Morris water maze to determine any behavioral effects followed by sacrifice to extract hippocampal tissue for Western blotting to measure protein expression of p-tau, DNMT1, DNMT3A, DNMT3B, TET1, and p-Akt. No marked alterations were noted in any parameters following blank virus transfection. In SAMP8 mice, a significant decrease was noted in protein expression of DNMT1, DNMT3A, DNMT3B, and p-Akt associated with rise in p-tau and TET1. Transfection with ps-Lenti-U6-SNHG1 alone in SAMR1 mice resulted in a significant rise in DNMTs and p-Akt and a fall in p-tau and TET1. Transfection of SAMP8 with ps-Lenti-U6-SNHG1 blocked effects on overexpression noted in this mouse strain. However, knockdown of lncRNA SNHG1 yielded the opposite results as found in SAMR1 mice. In conclusion, the knockdown of lncRNA SNHG1 enhanced DNA methylation through the PI3K/Akt signaling pathway, thereby reducing the phosphorylation levels of tau in SAMP8 AD model mice with ameliorating brain damage attributed to p-tau accumulation with consequent neuroprotection.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , ARN Largo no Codificante , Ratones , Animales , Enfermedad de Alzheimer/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metilación de ADN , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Neurodegenerativas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
15.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506534

RESUMEN

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transducción de Señal , Animales , Masculino , Ratas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Chenopodiaceae/química , Dietilnitrosamina/toxicidad , Proteína Forkhead Box O3/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
16.
Front Behav Neurosci ; 18: 1286872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505323

RESUMEN

Methamphetamine is a highly abused psychostimulant that substantially impacts public health. Prenatal and postnatal methamphetamine exposure alters gene expression, brain development, and behavior in the offspring, although the underlying mechanisms are not fully defined. To assess these adverse outcomes in the offspring, we employed a mouse model of prenatal and postnatal methamphetamine exposure. Juvenile offspring were behaviorally assessed on the open field, novel object recognition, Y-maze, and forced swim tests. In addition, RNA sequencing was used to explore potential alterations in prefrontal cortical gene expression. We found that methamphetamine-exposed mice exhibited decreased locomotor activity and impaired cognitive performance. In addition, differential expression of genes involved in neurotransmission, synaptic plasticity, and neuroinflammation were found with notable changes in dopaminergic signaling pathways. These data suggest potential neural and molecular mechanisms underlying methamphetamine-exposed behavioral changes. The altered expression of genes involved in dopaminergic signaling and synaptic plasticity highlights potential targets for therapeutic interventions for substance abuse disorders and related psychiatric complications.

17.
Heliyon ; 10(2): e24376, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312674

RESUMEN

Aims: Yin Yang 1 (YY1) is a multifunctional transcription factor that plays an important role in tumour development and progression, while its clinical significance in diffuse large B-cell lymphoma (DLBCL) remains largely unexplored. This study aimed to investigate the expression and clinical implications of YY1 in DLBCL. Methods: YY1 expression in 198 cases of DLBCL was determined using immunohistochemistry. The correlation between YY1 expression and clinicopathological parameters as well as the overall survival (OS) and progression-free survival (PFS) of patients was analyzed. Results: YY1 protein expression was observed in 121 out of 198 (61.1 %) DLBCL cases. YY1 expression was significantly more frequent in cases of the GCB subgroup than in the non-GCB subgroup (P = 0.005). YY1 was positively correlated with the expression of MUM1, BCL6, pAKT and MYC/BCL2 but was negatively associated with the expression of CXCR4. No significant relationships were identified between YY1 and clinical characteristics, including age, sex, stage, localization, and B symptoms. Univariate analysis showed that the OS (P = 0.003) and PFS (P = 0.005) of patients in the YY1-negative group were significantly worse than those in the YY1-positive group. Multivariate analysis indicated that negative YY1 was a risk factor for inferior OS (P < 0.001) and PFS (P = 0.017) independent of the international prognostic index (IPI) score, treatment and Ann Arbor stage. Furthermore, YY1 is more powerful for stratifying DLBCL patients into different risk groups when combined with MYC/BCL2 double-expression (DE) status. Conclusions: YY1 was frequently expressed in DLBCL, especially in those of GCB phenotype and with MYC/BCL2-DE. As an independent prognostic factor, YY1 expression could predict a favourable outcome in DLBCL. In addition, a complex regulatory mechanism might be involved in the interactions between YY1 and MYC, pAKT as well as CXCR4 in DLBCL, which warrants further investigation.

18.
Cell Biochem Funct ; 42(1): e3938, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269514

RESUMEN

The liver is an important organ, and hepatic ischemia-reperfusion (IR) injury is a frequent pathophysiological process that can cause significant morbidity and mortality. Thus, our study aimed to investigate the effect of targeting PI3K/p-Akt/eNOS (phosphoinositide 3-kinase/phospho-protein kinase B/endothelial nitric oxide synthase), Nrf2/HO-1 (nuclear factor-erythroid 2-related factor-2/heme oxygenase-1), and NF-κB/p53 (nuclear factor-κB/tumor protein 53) signaling pathways by using angiotensin (1-7) [ang-(1-7)] against hepatic injury induced by IR. Thirty-two male rats were included in sham group, ang-(1-7)-treated group, hepatic IR group, and hepatic IR group treated with ang-(1-7). The levels of hepatic ang-(1-7), angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), HO-1, malondialdehyde (MDA), PI3K, and p-Akt were assessed. The expressions of eNOS and B-cell leukemia/lymphoma-2 (BCL-2) in the liver were determined. Histological assessment and immunohistochemical expression of NF-κB, p53, and Nrf2 were carried out. The levels of reduced glutathione (GSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in serum were estimated. Results showed that administration of ang-(1-7) to hepatic IR rats led to significant amelioration of hepatic damage through a histological evaluation that was associated with significant upregulation of the expressions of PI3K/p-Akt/eNOS and Nrf2/HO-1 with downregulation of NF-κB/p53 signaling pathways. In conclusion, PI3K/p-Akt/eNOS and Nrf2/HO-1 signaling pathways are involved in the protective effects of ang-(1-7) against hepatic damage induced by IR. Therefore, ang-(1-7) can be used to prevent hepatic IR, which occurs in certain conditions such as liver transplantation, hemorrhagic shock, and severe infection.


Asunto(s)
Angiotensina I , FN-kappa B , Fragmentos de Péptidos , Daño por Reperfusión , Masculino , Animales , Ratas , Fosfatidilinositol 3-Quinasas , Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Proteína p53 Supresora de Tumor , Óxido Nítrico Sintasa de Tipo III , Hígado , Isquemia , Reperfusión , Transducción de Señal
19.
J Cell Biochem ; 125(3): e30520, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38226684

RESUMEN

Elevated circulating branched-chain amino acids (BCAAs) have been correlated with the severity of insulin resistance, leading to recent investigations that stimulate BCAA metabolism for the potential benefit of metabolic diseases. BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), an inhibitor of branched-chain ketoacid dehydrogenase kinase, promotes BCAA metabolism by enhancing BCKDH complex activity. The purpose of this report was to investigate the effects of BT2 on mitochondrial and glycolytic metabolism, insulin sensitivity, and de novo lipogenesis both with and without insulin resistance. C2C12 myotubes were treated with or without low or moderate levels of BT2 with or without insulin resistance. Western blot and quantitative real-time polymerase chain reaction were used to assess protein and gene expression, respectively. Mitochondrial, nuclei, and lipid content were measured using fluorescent staining and microscopy. Cell metabolism was assessed via oxygen consumption and extracellular acidification rate. Liquid chromatography-mass spectrometry was used to quantify BCAA media content. BT2 treatment consistently promoted mitochondrial uncoupling following 24-h treatment, which occurred largely independent of changes in expressional profiles associated with mitochondrial biogenesis, mitochondrial dynamics, BCAA catabolism, insulin sensitivity, or lipogenesis. Acute metabolic studies revealed a significant and dose-dependent effect of BT2 on mitochondrial proton leak, suggesting BT2 functions as a small-molecule uncoupler. Additionally, BT2 treatment consistently and dose-dependently reduced extracellular BCAA levels without altering expression of BCAA catabolic enzymes or pBCKDHa activation. BT2 appears to act as a small-molecule mitochondrial uncoupler that promotes BCAA utilization, though the interplay between these two observations requires further investigation.


Asunto(s)
Resistencia a la Insulina , Insulina , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas , Inhibidores de Proteínas Quinasas/farmacología , Protones
20.
Adv Healthc Mater ; 13(9): e2303394, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38288911

RESUMEN

Due to the inherent radiation tolerance, patients who suffered from glioma frequently encounter tumor recurrence and malignant progression within the radiation target area, ultimately succumbing to treatment ineffectiveness. The precise mechanism underlying radiation tolerance remains elusive due to the dearth of in vitro models and the limitations associated with animal models. Therefore, a bioprinted glioma model is engineered, characterized the phenotypic traits in vitro, and the radiation tolerance compared to 2D ones when subjected to X-ray radiation is assessed. By comparing the differential gene expression profiles between the 2D and 3D glioma model, identify functional genes, and analyze distinctions in gene expression patterns. Results showed that 3D glioma models exhibited substantial alterations in the expression of genes associated with the stromal microenvironment, notably a significant increase in the radiation tolerance gene ITGA2 (integrin subunit A2). In 3D glioma models, the knockdown of ITGA2 via shRNA resulted in reduced radiation tolerance in glioma cells and concomitant inhibition of the p-AKT pathway. Overall, 3D bioprinted glioma model faithfully recapitulates the in vivo tumor microenvironment (TME) and exhibits enhanced resistance to radiation, mediated through the ITGA2/p-AKT pathway. This model represents a superior in vitro platform for investigating glioma radiotherapy tolerance.


Asunto(s)
Glioma , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Transducción de Señal , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA