Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protoplasma ; 259(3): 615-626, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34232395

RESUMEN

Characeae are closely related to the ancient algal ancestors of all land plants. The long characean cells display a pH banding pattern to facilitate inorganic carbon import in the acid zones for photosynthetic efficiency. The excess OH-, generated in the cytoplasm after CO2 is taken into the chloroplasts, is disposed of in the alkaline band. To identify the transporter responsible, we searched the Chara australis transcriptome for homologues of mouse Slc4a11, which functions as OH-/H+ transporter. We found a single Slc4-like sequence CL5060.2 (named CaSLOT). When CaSLOT was expressed in Xenopus oocytes, an increase in membrane conductance and hyperpolarization of resting potential difference (PD) was observed with external pH increase to 9.5. These features recall the behavior of Slc4a11 in oocytes and are consistent with the action of a pH-dependent OH-/H+ conductance. The large scatter in the data might reflect intrinsic variability of CaSLOT transporter activation, inefficient expression in the oocyte due to evolutionary distance between ancient algae and frogs, or absence of putative activating factor present in Chara cytoplasm. CaSLOT homologues were found in chlorophyte and charophyte algae, but surprisingly not in related charophytes Zygnematophyceae or Coleochaetophyceae.


Asunto(s)
Chara , Simportadores , Animales , Proteínas de Transporte de Anión/metabolismo , Cloroplastos/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana , Ratones , Fotosíntesis , Simportadores/metabolismo
2.
Protoplasma ; 256(6): 1737-1751, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31367920

RESUMEN

Characean internodal cells develop alternating patterns of acid and alkaline zones along their surface in order to facilitate uptake of carbon required for photosynthesis. In this study, we used a pH-indicating membrane dye, 4-heptadecylumbiliferone, to study the kinetics of alkaline band formation and decomposition. The differences in growth/decay kinetics suggested that growth occurred as an active, autocatalytic process, whereas decomposition was due to diffusion. We further investigated mutual interactions between internodal cells and found that their alignment parallel to each other induced matching of the pH banding patterns, which was mirrored by chloroplast activity. In non-aligned cells, the lowered photosynthetic activity was noted upon a rise of the external pH, suggesting that the matching of pH bands was due to a local elevation of membrane conductance by the high pH of the alkaline zones of neighboured cells. Finally, we show that the altered pH banding pattern caused the reorganization of the cortical cytoplasm. Complex plasma membrane elaborations (charasomes) were degraded via endocytosis, and mitochondria were moved away from the cortex when a previously acid region became alkaline and vice versa. Our data show that characean internodal cells react flexibly to environmental cues, including those originating from neighboured cells.


Asunto(s)
Comunicación Celular/fisiología , Chara/química , Cloroplastos/química , Concentración de Iones de Hidrógeno
3.
Biophys Rev ; 11(2): 235-239, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30830677

RESUMEN

The large-celled green alga Chara provided early electrophysiological data, but this model organism lost popularity once the smaller cells of higher plants became accessible to electrophysiology and genetic manipulation. However, with the sequencing of the Chara braunii genome (Nishiyama et al. Cell 174: 448-464, 2018), the molecular identity of the underlaying ion transporters in Characeae can be found and placed in evolutionary context. As Characeae are close to ancestors of land plants, the wealth of electrophysiological data will provide insights into important aspects of plant physiology, such as salt tolerance and sensitivity, carbon concentrating mechanisms, pH banding and the action potential generation.

4.
Protoplasma ; 255(3): 851-862, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29247277

RESUMEN

To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H+/OH- channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl2, the main known blocker of animal H+ channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H+ from the cell wall charges, the H+/OH- channel conductance/density, and self-organization are discussed. No homologies to animal H+ channels were found. Salinity activation of the H+/OH- channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.


Asunto(s)
Chara/fisiología , Hidróxidos/metabolismo , Canales Iónicos/metabolismo , Protones , Salinidad , Álcalis/metabolismo , Pared Celular/metabolismo , Chara/citología , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Concentración de Iones de Hidrógeno , Estrés Fisiológico
5.
Plant Cell Physiol ; 56(10): 1981-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26272553

RESUMEN

Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Chara/metabolismo , Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA