Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transbound Emerg Dis ; 69(3): 1364-1374, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33835714

RESUMEN

Argentina is a home to millions of beef and dairy cattle and is one of the world's major exporters of meat. In the present study, Trypanosoma vivax was prevalent (2016-2018) in two major livestock farming regions, the Gran Chaco and the Pampas. In the Gran Chaco, 29% and 51% of animals (n = 72, taurine x zebuine crossbreed) were, respectively, positive by TviCATL-PCR and the more sensitive fluorescent fragment length barcoding (FFLB) method. While 18.4/38.8% of breeding cows (n = 49) tested positive by PCR/FFLB, infection increased to 52.2/78.3% in an outbreak of acute infection in steers (n = 23, taurine breed) brought from a non-endemic area. In the Pampas, overall infection rates in dairy cows (n = 54, taurine breed) were comparable (p > .01) between PCR (66.7%) and FFLB (62.9%) and showed a remarkable increase (PCR / FFLB) from 48.3/44.8% in 2017 to 88/84% in 2018. Infected dairy cattle exhibited anaemia, fever, anorexia, enlarged lymph nodes, emaciation and neurological signs. In contrast, beef cows (taurine x zebuine crossbreed) from the Pampas (n = 30) were asymptomatic despite exhibiting 16.7% (PCR) and 53.3% (FFLB) infection rates. Microsatellite genotyping revealed a remarkable microheterogeneity, seven genotypes in the Gran Chaco, nine in the Pampas and five shared between both regions, consistent with regular movement of T. vivax infected livestock. Data gathered in our study support the Gran Chaco being an endemic area for T. vivax, whereas the Pampas emerged as an outbreak area of acute infection in dairy cattle with critical negative impact in milk production. To the best of our knowledge, this is the first molecular study of T. vivax in Argentina, and results indicated the need for preventive measures to control T. vivax spread from the Gran Chaco to vast livestock farming areas across Argentina.


Asunto(s)
Bovinos , Brotes de Enfermedades , Trypanosoma vivax , Tripanosomiasis Africana , Animales , Argentina/epidemiología , Bovinos/parasitología , Brotes de Enfermedades/veterinaria , Femenino , Genotipo , Ganado , Trypanosoma vivax/genética , Tripanosomiasis Africana/veterinaria
2.
Elife ; 72018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29683427

RESUMEN

Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As a unifying framework for understanding parasite spread through interdependent transmission paths, we present the 'ecomultiplex' model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for Trypanosoma cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems.


Asunto(s)
Enfermedad de Chagas/transmisión , Control de Enfermedades Transmisibles/métodos , Transmisión de Enfermedad Infecciosa , Ecosistema , Métodos Epidemiológicos , Interacciones Huésped-Parásitos , Trypanosoma cruzi/crecimiento & desarrollo , Animales , Enfermedad de Chagas/epidemiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA