Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Ecol Evol ; 22(1): 130, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335298

RESUMEN

BACKGROUND: Fairy rings occur in diverse global biomes; however, there is a critical knowledge gap regarding drivers of fairy rings in grassland ecosystems. Grassland fairy rings are characterized belowground by an expanding mycelial front and aboveground by vigorous vegetation rings that develop concentrically with each growing season. We evaluated fairy ring dynamics in a field study conducted in semiarid grasslands to elucidate above- and belowground interactions driving distinct vegetation patterns. We followed this initial field investigation with a complementary greenhouse experiment, using soils collected from specific fairy ring zones (inside, ring-edge, outside) to examine plant-soil-microbial interactions under controlled conditions. We selected Leymus chinensis (a dominant grass) as our model plant species to assess the role of diverse fairy ring microbial communities on plant growth and nutrition. RESULTS: In our field study, plants on the ring-edge produced greater shoot biomass with higher concentrations of N and P, compared to plants inside the ring or adjacent (outside) controls. Soil microbial community biomarkers indicate shifts in relative microbial biomass as fairy rings expand. Inside the ring, plant roots showed greater damage from pathogenic fungi, compared to outside or ring-edge. Our greenhouse experiment confirmed that inoculation with live ring-edge soil generally promoted plant growth but decreased shoot P concentration. Inoculation with soil collected from inside the ring increased root pathogen infection and reduced shoot biomass. CONCLUSION: We propose that soil microbial activity within ring-edges promotes plant growth via mobilization of plant-available P or directed stimulation. However, as the ring expands, L. chinensis at the leading edge may increase pathogen accumulation, resulting in reduced growth at the center of the ring in subsequent growing seasons. Our results provide new insights into the plant-soil-microbial dynamics of fairy rings in grasslands, helping to elucidate these mysterious vegetation patterns.


Asunto(s)
Microbiota , Suelo , Pradera , Poaceae , Microbiología del Suelo , Plantas
2.
Front Microbiol ; 13: 857796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558123

RESUMEN

To determine whether disease-mediated invasion of exotic plants can occur and whether this increases the risk of disease transmission in local ecosystems, it is necessary to characterize the species composition and host range of pathogens accumulated in invasive plants. In this study, we found that Didymellaceae, a family containing economically important plant fungal pathogens, is commonly associated with the invasive plant Ageratina adenophora. Accordingly, we characterized its phylogenetic position through multi-locus phylogenetic analysis, as well as its environmental distribution, virulence, and host range. The results indicated that 213 fungal collections were from 11 genera in Didymellaceae, ten of which are known, and one is potentially new. Didymella, Epicoccum, Remotididymella, and Mesophoma were the dominant genera, accounting for 93% of total isolates. The virulence and host ranges of these fungi were related to their phylogenetic relationship. Boeremia exigua, Epicoccum latusicollum, and E. sorghinum were found to be strongly virulent toward all tested native plants as well as toward A. adenophora; M. speciosa and M. ageratinae were weakly virulent toward native plants but strongly virulent toward A. adenophora, thus displaying a narrow host range. Co-evolution analysis showed no strong phylogenetical signal between Didymellaceae and host plants. Isolates S188 and Y122 (belonging to M. speciosa and M. ageratinae, respectively) showed strong virulence toward A. adenophora relative to native plants, highlighting their potential as biocontrol agents for A. adenophora invasion. This study provides new insights into the understanding of the long-term ecological consequences of disease transmission driven by plant invasion.

3.
Annu Rev Phytopathol ; 58: 97-117, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32516034

RESUMEN

Non-native invasive plants can establish in natural areas, where they can be ecologically damaging and costly to manage. Like cultivated plants, invasive plants can experience a relatively disease-free period upon introduction and accumulate pathogens over time. Diseases of invasive plant populations are infrequently studied compared to diseases of agriculture, forestry, and even native plant populations. We evaluated similarities and differences in the processes that are likely to affect pathogen accumulation and disease in invasive plants compared to cultivated plants, which are the dominant focus of the field of plant pathology. Invasive plants experience more genetic, biotic, and abiotic variation across space and over time than cultivated plants, which is expected to stabilize the ecological and evolutionary dynamics of interactions with pathogens and possibly weaken the efficacy of infectious disease in their control. Although disease is expected to be context dependent, the widespread distribution of invasive plants makes them important pathogen reservoirs. Research on invasive plant diseases can both protect crops and help manage invasive plant populations.


Asunto(s)
Evolución Biológica , Enfermedades de las Plantas , Agricultura , Productos Agrícolas
4.
Proc Natl Acad Sci U S A ; 116(19): 9178-9180, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010927

RESUMEN

Two North American fungal pathogens caused a coepizootic leading to localized collapse of an outbreak population of the newly invasive planthopper pest, the spotted lanternfly (Lycorma delicatula), in the eastern United States. The pathogens partitioned the habitat, with the majority of L. delicatula on tree trunks killed by Batkoa major, while cadavers of L. delicatula killed by Beauveria bassiana were usually on the ground. The future will show whether these pathogens will be drivers in boom-bust cycles or will result in recurrent low population densities of this new invasive species.


Asunto(s)
Beauveria/fisiología , Hemípteros/microbiología , Herbivoria/fisiología , Animales , Hemípteros/fisiología , Especies Introducidas , Control Biológico de Vectores , Enfermedades de las Plantas/parasitología , Árboles/parasitología
5.
Ecology ; 98(3): 861-874, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28039867

RESUMEN

Biological invasions are a threat to global biodiversity and provide unique opportunities to study ecological processes. Population bottlenecks are a common feature of biological invasions and the severity of these bottlenecks is likely to be compounded as an invasive species spreads from initial invasion sites to additional locations. Despite extensive work on the genetic consequences of bottlenecks, we know little about how they influence microbial communities of the invaders themselves. Due to serial bottlenecks, invasive species may lose microbial symbionts including pathogenic taxa (the enemy release hypothesis) and/or may accumulate natural enemies with increasing time after invasion (the pathogen accumulation and invasive decline hypothesis). We tested these alternate hypotheses by surveying bacterial communities of Argentine ants (Linepithema humile). We found evidence for serial symbiont bottlenecks: the bacterial community richness declined over the invasion pathway from Argentina to New Zealand. The abundance of some genera, such as Lactobacillus, also significantly declined over the invasion pathway. Argentine ants from populations in the United States shared the most genera with ants from their native range in Argentina, while New Zealand shared the least (120 vs. 57, respectively). Nine genera were present in all sites around the globe possibly indicating a core group of obligate microbes. In accordance with the pathogen accumulation and invasive decline hypothesis, Argentine ants acquired genera unique to each specific invaded country. The United States had the most unique genera, though even within New Zealand these ants acquired symbionts. In addition to our biogeographic sampling, we administered antibiotics to Argentine ants to determine if changes in the micro-symbiont community could influence behavior and survival in interspecific interactions. Treatment with the antibiotics spectinomycin and kanamycin only slightly increased Argentine ant interspecific aggression, but this increase significantly decreased survival in interspecific interactions. The survival of the native ant species also decreased when the symbiotic microbial community within Argentine ants was modified by antibiotics. Our work offers support for both the enemy release hypothesis and that invasive species accumulate novel microbial taxa within their invaded range. These changes appear likely to influence invader behavior and survival.


Asunto(s)
Hormigas/fisiología , Especies Introducidas , Simbiosis , Animales , Argentina , Nueva Zelanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA