Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000224

RESUMEN

Pericytes are a distinct type of cells interacting with endothelial cells in blood vessels and contributing to endothelial barrier integrity. Furthermore, pericytes show mesenchymal stem cell properties. Muscle-derived pericytes can demonstrate both angiogenic and myogenic capabilities. It is well known that regenerative abilities and muscle stem cell potential decline during aging, leading to sarcopenia. Therefore, this study aimed to investigate the potential of pericytes in supporting muscle differentiation and angiogenesis in elderly individuals and in patients affected by Ullrich congenital muscular dystrophy or by Bethlem myopathy, two inherited conditions caused by mutations in collagen VI genes and sharing similarities with the progressive skeletal muscle changes observed during aging. The study characterized pericytes from different age groups and from individuals with collagen VI deficiency by mass spectrometry-based proteomic and bioinformatic analyses. The findings revealed that aged pericytes display metabolic changes comparable to those seen in aging skeletal muscle, as well as a decline in their stem potential, reduced protein synthesis, and alterations in focal adhesion and contractility, pointing to a decrease in their ability to form blood vessels. Strikingly, pericytes from young patients with collagen VI deficiency showed similar characteristics to aged pericytes, but were found to still handle oxidative stress effectively together with an enhanced angiogenic capacity.


Asunto(s)
Colágeno Tipo VI , Pericitos , Proteoma , Humanos , Pericitos/metabolismo , Colágeno Tipo VI/metabolismo , Colágeno Tipo VI/genética , Proteoma/metabolismo , Células Cultivadas , Adulto , Persona de Mediana Edad , Anciano , Envejecimiento/metabolismo , Proteómica/métodos , Masculino , Femenino , Estrés Oxidativo , Diferenciación Celular
2.
J Cereb Blood Flow Metab ; : 271678X241264083, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053486

RESUMEN

Although most laminin isoforms are neuroprotective in stroke, mural cell-derived laminin-α5 plays a detrimental role in an ischemia-reperfusion model. To determine whether this deleterious effect is an intrinsic feature of mural cell-derived laminin-α5 or unique to ischemic stroke, we performed loss-of-function studies using middle-aged mice with laminin-α5 deficiency in mural cells (α5-PKO) in an intracerebral hemorrhage (ICH) model. Control and α5-PKO mice exhibited comparable changes in all parameters examined, including hematoma size, neuronal death, neurological function, blood-brain barrier integrity, and reactive gliosis. These findings highlight a minimal role of mural cell-derived laminin-α5 in ICH. Together with the detrimental role of mural cell-derived laminin-α5 in ischemic stroke, these negative results in ICH model suggest that mural cell-derived laminin-α5 may exert distinct functions in different diseases.

3.
Phytother Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886264

RESUMEN

Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.

4.
Biomed Pharmacother ; 176: 116870, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850658

RESUMEN

Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.


Asunto(s)
Pericitos , Pericitos/patología , Humanos , Animales , Arteriosclerosis Intracraneal/patología , Arteriosclerosis Intracraneal/fisiopatología , Vasa Vasorum/patología , Vasa Vasorum/fisiopatología , Arterias Cerebrales/patología
5.
Cell Biosci ; 14(1): 85, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937783

RESUMEN

Microvascular destabilization is the primary cause of the inner blood-retinal barrier (iBRB) breakdown and increased vascular leakage in diabetic retinopathy (DR). Microvascular destabilization results from the combinational effects of increased levels of growth factors and cytokines, involvement of inflammation, and the changed cell-to-cell interactions, especially the loss of endothelial cells and pericytes, due to hyperglycemia and hypoxia. As the manifestation of microvascular destabilization, the fluid transports via paracellular and transcellular routes increase due to the disruption of endothelial intercellular junctional complexes and/or the altered caveolar transcellular transport across the retinal vascular endothelium. With diabetes progression, the functional and the structural changes of the iBRB components, including the cellular and noncellular components, further facilitate and aggravate microvascular destabilization, resulting in macular edema, the neuroretinal damage and the dysfunction of retinal inner neurovascular unit (iNVU). Although there have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying the microvascular destabilization, some still remain to be fully elucidated. Recent data indicate that targeting the intricate signaling pathways may allow to against the microvascular destabilization. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in the microvascular destabilization in DR. In this review, we discuss: (1) the brief introduction of DR and microvascular destabilization; (2) the cellular and molecular components of iBRB and iNVU, and the breakdown of iBRB; (3) the matrix and cell-to-cell contacts to maintain microvascular stabilization, including the endothelial glycocalyx, basement membrane, and various cell-cell interactions; (4) the molecular mechanisms mediated cell-cell contacts and vascular cell death; (5) the altered cytokines and signaling pathways as well as the intricate network of the cytokines involved in microvascular destabilization. This comprehensive review aimed to provide the insights for microvascular destabilization by targeting the key molecules or specific iBRB cells, thus restoring the function and structure of iBRB and iNVU, to treat DR.

6.
Sci Prog ; 107(2): 368504241257126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863331

RESUMEN

Pericytes (PCs) are versatile cells integral to the microcirculation wall, exhibiting specific stem cell traits. They are essential in modulating blood flow, ensuring vascular permeability, maintaining homeostasis, and aiding tissue repair process. Given their involvement in numerous disease-related pathological and physiological processes, the regulation of PCs has emerged as a focal point of research. Adenomyosis is characterized by the presence of active endometrial glands and stroma encased by an enlarged and proliferative myometrial layer, further accompanied by fibrosis and new blood vessel formation. This distinct pathological condition might be intricately linked with PCs. This article comprehensively reviews the markers associated with PCs, their contributions to angiogenesis, blood flow modulation, and fibrotic processes. Moreover, it provides a comprehensive overview of the current research on adenomyosis pathophysiology, emphasizing the potential correlation and future implications regarding PCs and the development of adenomyosis.


Asunto(s)
Adenomiosis , Pericitos , Adenomiosis/patología , Adenomiosis/fisiopatología , Pericitos/patología , Humanos , Femenino , Neovascularización Patológica/patología , Animales , Fibrosis/patología , Endometrio/patología , Endometrio/irrigación sanguínea , Miometrio/patología , Biomarcadores/metabolismo
7.
Open Biol ; 14(6): 230349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862017

RESUMEN

Coronavirus disease 2019 (COVID-19) was initially considered a primarily respiratory disease but is now known to affect other organs including the heart and brain. A major route by which COVID-19 impacts different organs is via the vascular system. We studied the impact of apolipoprotein E (APOE) genotype and inflammation on vascular infectivity by pseudo-typed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses in mouse and human cultured endothelial cells and pericytes. Possessing the APOE4 allele or having existing systemic inflammation is known to enhance the severity of COVID-19. Using targeted replacement human APOE3 and APOE4 mice and inflammation induced by bacterial lipopolysaccharide (LPS), we investigated infection by SARS-CoV-2. Here, we show that infectivity was higher in murine cerebrovascular pericytes compared to endothelial cells and higher in cultures expressing APOE4. Furthermore, increasing the inflammatory state of the cells by prior incubation with LPS increased infectivity into human and mouse pericytes and human endothelial cells. Our findings provide insights into the mechanisms underlying severe COVID-19 infection, highlighting how risk factors such as APOE4 genotype and prior inflammation may exacerbate disease severity by augmenting the virus's ability to infect vascular cells.


Asunto(s)
COVID-19 , Células Endoteliales , Pericitos , SARS-CoV-2 , Pericitos/virología , Pericitos/metabolismo , Pericitos/patología , Humanos , Animales , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , COVID-19/virología , COVID-19/patología , Ratones , Células Endoteliales/virología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factores de Riesgo , Lipopolisacáridos/farmacología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Inflamación/virología , Inflamación/patología
8.
Elife ; 122024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856719

RESUMEN

Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.


Asunto(s)
Disfunción Eréctil , Pene , Pericitos , Análisis de Expresión Génica de una Sola Célula , Animales , Humanos , Masculino , Ratones , Disfunción Eréctil/genética , Disfunción Eréctil/metabolismo , Ratones Endogámicos C57BL , Pene/metabolismo , Pericitos/metabolismo , Transcriptoma
9.
Exp Neurol ; 379: 114864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38866101

RESUMEN

Platelet-derived growth factor receptor ß positive (PDGFRß+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.


Asunto(s)
Movimiento Celular , Fibroblastos , Lisofosfolípidos , Microglía , Pericitos , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Esfingosina , Traumatismos de la Médula Espinal , Proteínas Señalizadoras YAP , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Transducción de Señal/fisiología , Lisofosfolípidos/metabolismo , Animales , Movimiento Celular/fisiología , Pericitos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Microglía/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Ratas , Fibroblastos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Ratas Sprague-Dawley , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Células Cultivadas
10.
Tissue Cell ; 89: 102431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870572

RESUMEN

Tunneling nanotubes (TNTs) represent an innovative way for cells to communicate with one another, as they act as long conduits between cells. However, their roles in human dermal microvascular pericytes (HDMPCs) interaction remain elusive in vitro. In this work, we identified and characterized the TNT-like structures that connected two or more pericytes in two-dimensional cultures and formed a functional network in the human dermis. Immunofluorescence assay indicated that the F-actin was an essential element to form inter-pericyte TNT-like structures, as it decreased in actin polymer inhibitor-cytochalasin B treated groups, and microtubules were present in almost half of the TNT-like structures. Most importantly, we only found the presence of mitochondrial in TNT-like structures containing α-tubulin, and the application of microtubule assembly inhibitor-Nocodazole significantly reduced the percentage of TNT-like structures that contain α-tubulin, resulting in a sudden decrease in the positive rate of cytochrome c oxidase subunit 4 isoform 1 (COX IV, a marker of mitochondria) in TNT-like structures. In summary, we described a novel intercellular communication-TNT-like structures-between HDMPCs in vitro, and this work allows us to properly understand the cellular mechanisms of spreading materials between HDMPCs, shedding light on the role of HDMPCs.


Asunto(s)
Pericitos , Humanos , Pericitos/citología , Pericitos/metabolismo , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Dermis/citología , Dermis/metabolismo , Comunicación Celular , Mitocondrias/metabolismo , Actinas/metabolismo , Nanotubos/química , Microvasos/citología , Microvasos/metabolismo , Células Cultivadas , Estructuras de la Membrana Celular
11.
FASEB J ; 38(10): e23679, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780117

RESUMEN

Retinal vascular diseases (RVDs), in particular diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity, are leading contributors to blindness. The pathogenesis of RVD involves vessel dilatation, leakage, and occlusion; however, the specific underlying mechanisms remain unclear. Recent findings have indicated that pericytes (PCs), as critical members of the vascular mural cells, significantly contribute to the progression of RVDs, including detachment from microvessels, alteration of contractile and secretory properties, and excessive production of the extracellular matrix. Moreover, PCs are believed to have mesenchymal stem properties and, therefore, might contribute to regenerative therapy. Here, we review novel ideas concerning PC characteristics and functions in RVDs and discuss potential therapeutic strategies based on PCs, including the targeting of pathological signals and cell-based regenerative treatments.


Asunto(s)
Pericitos , Pericitos/metabolismo , Humanos , Animales , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Enfermedades de la Retina/terapia , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/terapia , Retinopatía Diabética/patología
12.
Tissue Barriers ; : 2350821, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712515

RESUMEN

Breakdown of blood-brain barrier (BBB) represents a key pathology in hyperglycemia-mediated cerebrovascular damage after an ischemic stroke. As changes in the level and nature of vasoactive agents released by endothelial cells (ECs) may contribute to BBB dysfunction, this study first explored the specific impact of hyperglycemia on EC characteristics and secretome. It then assessed whether secretome obtained from ECs subjected to normoglycaemia or hyperglycemia might regulate pericytic cytokine profile differently. Using a triple cell culture model of human BBB, composed of brain microvascular EC (BMEC), astrocytes and pericytes, this study showed that exposure to hyperglycemia (25 mM D-glucose) for 72 h impaired the BBB integrity and function as evidenced by decreases in transendothelial electrical resistance and increases in paracellular flux of sodium fluorescein. Dissolution of zonula occludens-1, a tight junction protein, and appearance of stress fibers appeared to play a key role in this pathology. Despite elevations in angiogenin, endothelin-1, interleukin-8 and basic fibroblast growth factor levels and a decrease in placental growth factor levels in BMEC subjected to hyperglycemia vs normoglycaemia (5.5 mM D-glucose), tubulogenic capacity of BMECs remained similar in both settings. Similarly, pericytes subjected to secretome obtained from hyperglycemic BMEC released higher quantities of macrophage migration inhibitory factor and serpin and lower quantities of monocyte chemoattractant protein-1, intercellular adhesion molecule, interleukin-6 and interleukin-8. Taken together these findings indicate the complexity of the mechanisms leading to BBB disruption in hyperglycemic settings and emphasize the importance of endothelial cell-pericyte axis in the development of novel therapeutic strategies.

13.
J Biomed Res ; : 1-10, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38808554

RESUMEN

Pericytes are located in the stromal membrane of the capillary outer wall and contain endothelial cells (ECs). They are pivotal in regulating blood flow, enhancing vascular stability, and maintaining the integrity of the blood-retina barrier (BRB)/blood-brain barrier (BBB). The pluripotency of pericytes allows them to differentiate into various cell types, highlighting their significance in vascular disease pathogenesis, as demonstrated by previous studies. This potential enables pericytes to be a potential biomarker for the diagnosis and a target for treatment of vascular disorders. The retina, an essential part of the eyeball, is an extension of cerebral tissue with a transparent refractive medium. It offers a unique window for assessing systemic microvascular lesions. Routine fundus examination is necessary for patients with diabetes and hypertension. Manifestations, such as retinal artery tortuosity, dilation, stenosis, and abnormal arteriovenous anastomosis, serve as typical hallmarks of retinal vasculopathy. Therefore, studies of ocular vascular diseases significantly facilitate the exploration of systemic vascular diseases.

14.
Curr Top Dev Biol ; 159: 59-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729684

RESUMEN

The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.


Asunto(s)
Alveolos Pulmonares , Animales , Humanos , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Intercambio Gaseoso Pulmonar/fisiología , Regeneración , Pulmón/citología , Pulmón/metabolismo , Lesión Pulmonar/patología
15.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768086

RESUMEN

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Asunto(s)
Enfermedad de Alzheimer , Ratones Transgénicos , Pericitos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Pericitos/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Curcumina/farmacología , Curcumina/química , Profármacos/farmacología , Profármacos/química , Nanopartículas/química , Molécula 1 de Adhesión Celular Vascular/metabolismo , Humanos , Péptidos/química , Péptidos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química
16.
Int Immunopharmacol ; 135: 112290, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38796964

RESUMEN

Anesthesia and surgery activate matrix metalloproteinase 9 (MMP9), leading to blood-brain barrier (BBB) disruption and postoperative delirium (POD)-like behavior, especially in the elderly. Aged mice received intraperitoneal injections of either the MMP9 inhibitor SB-3CT, melatonin, or solvent, and underwent laparotomy under 3 % sevoflurane anesthesia(anesthesia/surgery). Behavioral tests were performed 24 h pre- and post-operatively. Serum and cortical tissue levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were measured using ELISA. Levels of PDGFRß, MMP9, tight junction, Mfsd2a, caveolin-1, synaptophysin, and postsynaptic densin (PSD)-95 proteins in the prefrontal cortex were assayed using Western blotting. BBB permeability was assessed by detecting IgG in the prefrontal cortex and serum S100ß levels. Anesthesia/surgery-induced peripheral inflammation activated MMP9, which in turn injured pericytes and tight junctions and increased transcytosis, thereby disrupting the BBB. Impaired BBB allowed the migration of peripheral inflammation into the central nervous system (CNS), thereby inducing neuroinflammation, synaptic dysfunction, and POD-like behaviors. However, MMP9 inhibition reduced pericyte and tight junction injury and transcytosis, thereby preserving BBB function and preventing the migration of peripheral inflammation into the CNS, thus attenuating synaptic dysfunction and POD-like behavior. In addition, to further validate the above findings, we showed that melatonin exerted similar effects through inhibition of MMP9. The present study shows that after anesthesia/surgery, inflammatory cytokines upregulation is involved in regulating BBB permeability in aged mice through activation of MMP9, suggesting that MMP9 may be a potential target for the prevention of POD.


Asunto(s)
Barrera Hematoencefálica , Metaloproteinasa 9 de la Matriz , Melatonina , Enfermedades Neuroinflamatorias , Sevoflurano , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Masculino , Ratones , Sevoflurano/farmacología , Enfermedades Neuroinflamatorias/inmunología , Melatonina/farmacología , Envejecimiento , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Citocinas/metabolismo , Complicaciones Posoperatorias , Anestesia , Conducta Animal/efectos de los fármacos , Laparotomía/efectos adversos , Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Compuestos Heterocíclicos con 1 Anillo , Sulfonas
18.
Cell Mol Neurobiol ; 44(1): 33, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625414

RESUMEN

Subarachnoid hemorrhage (SAH) is associated with high mortality and disability rates, and secondary white matter injury is an important cause of poor prognosis. However, whether brain capillary pericytes can directly affect the differentiation and maturation of oligodendrocyte precursor cells (OPCs) and subsequently affect white matter injury repair has still been revealed. This study was designed to investigate the effect of tissue inhibitor of metalloproteinase-3 (TIMP-3) for OPC differentiation and maturation. PDGFRßret/ret and wild-type C57B6J male mice were used to construct a mouse model of SAH via endovascular perforation in this study. Mice were also treated with vehicle, TIMP-3 RNAi or TIMP-3 RNAi + TIMP-3 after SAH. The effect of TIMP-3 on the differentiation and maturation of OPCs was determined using behavioral score, ELISA, transmission electron microscopy, immunofluorescence staining and cell culture. We found that TIMP-3 was secreted mainly by pericytes and that SAH and TIMP-3 RNAi caused a significant decrease in the TIMP-3 content, reaching a nadir at 24 h, followed by gradual recovery. In vitro, the myelin basic protein content of oligodendrocytes after oxyhemoglobin treatment was increased by TIMP-3 overexpression. The data indicates TIMP-3 could promote the differentiation and maturation of OPCs and subsequently improve neurological outcomes after SAH. Therefore, TIMP-3 could be beneficial for repair after white matter injury and could be a potential therapeutic target in SAH.


Asunto(s)
Células Precursoras de Oligodendrocitos , Hemorragia Subaracnoidea , Sustancia Blanca , Masculino , Animales , Ratones , Inhibidor Tisular de Metaloproteinasa-3 , Encéfalo
19.
Phytomedicine ; 129: 155639, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38669966

RESUMEN

BACKGROUND: Cerebral microcirculation disturbance manifested by decrease of cerebral blood flow (CBF) is one of early features of Alzheimer's disease (AD). Shenqi Yizhi prescription (SQYZ) is widely used in the treatment of AD. However, the effect of SQYZ on the early feature of AD is not clarified. PURPOSE: To explore the effect and mechanism of SQYZ on AD-like behavior from the perspective of early pathological features of AD. METHODS: The fingerprint of SQYZ was established by ultra-high-performance liquid chromatograph. The improvement effect of SQYZ on Aß1-42 Oligomer (AßO)-induced AD-like behavior of mice was evaluated by behavioral test. The changes of CBF were detected by laser doppler meter and laser speckle imaging. The pathological changes of the hippocampus were observed by HE staining and transmission electron microscope. The expressions of intercellular communication molecules were detected by western blotting or immunofluorescence staining. The content of platelet-derived growth factor-BB (PDGF-BB) was detected by ELISA. Finally, the core components of SQYZ were docked with platelet-derived growth factor receptor beta (PDGFRß) using AutoDock Vina software. RESULTS: The similarity of the components in SQYZ extracted from different batches of medicinal materials was higher than 0.9. SQYZ administration could improve AßO-induced memory impairment and CBF reduction. Compared with the sham group, the number of neurons in the hippocampi of AßO group was significantly reduced, and the microvessels were shrunken and deformed. By contrary, SQYZ administration mitigated those pathological changes. Compared with the sham mice, the expressions of CD31, N-cadherin, PDGFRß, glial fibrillary acidic protein, phosphorylation of focal adhesion kinase, integrin ß1, and integrin α5 in the hippocampi of AßO mice were significantly increased. However, SQYZ administration significantly reduced AßO-induced expression of those proteins. Interestingly, the effect of PDGFRß inhibitor, sunitinib demonstrated a consistent modulating effect as SQYZ. Finally, the brain-entering components of SQYZ, including ginsenoside Rg5, coptisine, cryptotanshinone, dihydrotanshinone IIA, stigmasterol, and tanshinone IIA had high binding force with PDGFRß, implicating PDGFRß as a potential target for SQYZ. CONCLUSIONS: Our data indicate that SQYZ improves CBF in AßO-triggered AD-like mice through inhibiting brain pericyte contractility, indicating the treatment potential of SQYZ for AD at the early stage.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Medicamentos Herbarios Chinos , Hipocampo , Trastornos de la Memoria , Pericitos , Animales , Medicamentos Herbarios Chinos/farmacología , Péptidos beta-Amiloides/metabolismo , Masculino , Ratones , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Pericitos/efectos de los fármacos , Hipocampo/efectos de los fármacos , Fragmentos de Péptidos , Becaplermina/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Ginsenósidos/farmacología
20.
Eur J Clin Invest ; 54(8): e14204, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38586936

RESUMEN

The adult mammalian heart contains a large population of pericytes that play important roles in homeostasis and disease. In the normal heart, pericytes regulate microvascular permeability and flow. Myocardial diseases are associated with marked alterations in pericyte phenotype and function. This review manuscript discusses the role of pericytes in cardiac homeostasis and disease. Following myocardial infarction (MI), cardiac pericytes participate in all phases of cardiac repair. During the inflammatory phase, pericytes may secrete cytokines and chemokines and may regulate leukocyte trafficking, through formation of intercellular gaps that serve as exit points for inflammatory cells. Moreover, pericyte contraction induces microvascular constriction, contributing to the pathogenesis of 'no-reflow' in ischemia and reperfusion. During the proliferative phase, pericytes are activated by growth factors, such as transforming growth factor (TGF)-ß and contribute to fibrosis, predominantly through secretion of fibrogenic mediators. A fraction of pericytes acquires fibroblast identity but contributes only to a small percentage of infarct fibroblasts and myofibroblasts. As the scar matures, pericytes form a coat around infarct neovessels, promoting stabilization of the vasculature. Pericytes may also be involved in the pathogenesis of chronic heart failure, by regulating inflammation, fibrosis, angiogenesis and myocardial perfusion. Pericytes are also important targets of viral infections (such as SARS-CoV2) and may be implicated in the pathogenesis of cardiac complications of COVID19. Considering their role in myocardial inflammation, fibrosis and angiogenesis, pericytes may be promising therapeutic targets in myocardial disease.


Asunto(s)
Infarto del Miocardio , Pericitos , Pericitos/fisiología , Humanos , Infarto del Miocardio/fisiopatología , Fibrosis , COVID-19 , Miocardio/patología , Insuficiencia Cardíaca/fisiopatología , Cardiomiopatías/fisiopatología , Animales , Miofibroblastos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA