Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(10): 590, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259417

RESUMEN

Photoelectrochemical (PEC) detection as a potential development strategy for hydrogen peroxide and dopamine sensors has received extensive attentions. Herein, BiOI/ZnIn2S4-X (X = n (BiOI)/n(ZnIn2S4)) heterojunction was synthesized using various molar ratios via a two-step method. A series of characterization techniques were employed to analyze the composition, surface structure, valence state, and optical properties of BiOI/ZnIn2S4-X. The results show that BiOI/ZnIn2S4-X perform significantly better than both BiOI and ZnIn2S4. Furthermore, BiOI/ZnIn2S4-9% exhibits superior visible light absorption capacity and photocurrent response among all of the BiOI/ZnIn2S4-X tested. Therefore, a PEC sensor was developed using BiOI/ZnIn2S4-9% for the detection of hydrogen peroxide and dopamine. The linear detection range for hydrogen peroxide spans from to 1 ~ 40,000 µM, with the LOD of 0.036 µM (S/N = 3). For dopamine, the corresponding values are 2 ~ 250 µM for the linear detection range, and 0.017 µM for the LOD, respectively. The sensor exhibits demonstrates excellent stability, reproducibility and resistance to interference, enabling the detection of real samples and thus holds promising application potential.

2.
Anal Chim Acta ; 1230: 340368, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36192059

RESUMEN

Detection of hydrogen peroxide and glucose in nanomolar level is crucial for point-of-care medical diagnosis. It has been reported that human's central nervous system diseases such as Alzheimer's disease, Parkinson's disease, and even amyotrophic lateral sclerosis, are presumably caused H2O2 or reactive radical species (ROS). Sensing of H2O2 released from human biofluids, tissues, organ from metabolism disorder at ultra-low concentration assists for early identification of severe diabetis mellitus related to glucose, and heart attack, as well as stroke related to cholesterol. In this work, carbon dots (CDs) having an average diameter at 6.99 nm with highly photoluminescence performance were successfully synthesized from palm empty fruit bunch (EFB) using green and environmentally friendly process via hydrothermal condition. CDs acted well on peroxidase-like activity for H2O2 detection at room temperature, however their sensitivity on ultra-low H2O2 concentration needed to be improved. To enhance their reactivity on H2O2 nanozyme activity at room temperature, synthesis of hybrid metal nanoparticles (AgNPs and PtNPs) on CDs surface was established. The findings exhibited that CDs/PtNPs was the most suitable nanozyme achieving highly efficient peroxidase mimic for dual mode of colorimetric and fluorescent H2O2 sensing platform at very low limit of detection of 0.01 mM (10 nM) H2O2.


Asunto(s)
Colorimetría , Nanocompuestos , Carbono , Colorantes , Glucosa , Humanos , Peróxido de Hidrógeno , Peroxidasa/metabolismo , Platino (Metal) , Especies Reactivas de Oxígeno
3.
Chembiochem ; 23(8): e202100691, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35128765

RESUMEN

Nanozymes are artificial enzyme systems which are easy to produce, highly stable and cost-effective in comparison to natural enzymes. Herein, we evaluated the peroxidase-like activity of gold nanorattles (Au NRTs) having a solid gold octahedron core and thin, porous cubic gold shell. We also prepared solid gold nanocubes and nanospheres of similar sizes and surface charge as that of Au NRTs and compared their activity with standard horse radish peroxidase (HRP). All the prepared nanostructures followed Michaelis-Menten kinetics as observed from their substrate concentration vs. initial reaction velocity plot using 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The kinetic parameters and the catalytic efficiency for the peroxidase-like activity of the nanostructures and HRP were calculated, and it was observed that Au NRTs possess the best nanozymatic activity with lowest KM and highest catalytic efficiency (kcat /KM ). The better activity of Au NRTs compared with other nanostructures and HRP could be attributed to the hollow porous structure with a solid core where different surfaces are available for reaction. Au NRTs, being the best amongst the tested nanozymes were further used for the sensing of hydrogen peroxide (H2 O2 ) and were found to sense H2 O2 down to 0.5 µM. Further, two naturally occurring antioxidants, tannic acid and ascorbic acid showed inhibitory effect on the peroxidase-like activity of Au NRTs in a concentration dependent manner which can be further used for screening of antioxidants or for determining the antioxidant potential.


Asunto(s)
Oro , Nanopartículas del Metal , Antioxidantes , Oro/química , Peroxidasa de Rábano Silvestre , Peróxido de Hidrógeno/química , Nanopartículas del Metal/química , Peroxidasa/química
4.
Chemosphere ; 287(Pt 2): 132105, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826890

RESUMEN

A simpler approach of functionalization for the fabrication of thiourea-functionalized-Graphene Aerogel (t-GA) is described here. Graphene Aerogel (GA) was synthesized from bio-mass, which on a simpler oxidative treatment get converted to its water-soluble version due to the impregnation of several oxygenous functionalities like carboxylic, hydroxyl, etc. Further, these carboxylated groups have been functionalized with the molecules of thiourea using the long known dicyclohexylcarbodiimide (DCC) as a coupling agent. The as-synthesized t-GA shows bright yellow fluorescence with a quantum yield of ~3% and holds the high-aqueous solubility and photostability. The fluorescence property of t-GA has been used here for the specific and selective sensing of toxic lead (Pb(II)) metal ions from the used many other metal ions via the fluorescence quenching and showed a limit of detection ~7.3 nM. Further, the mechanism for selective sensing was studied in detail and found to be preferable via ligand to metal charge transfer quenching mechanism. The cyclic voltammetry studies supported the selective sensing of Pb(II). Moreover, t-GA has also been studied for the sensing of hydrogen peroxide and as a yellow fluorescent ink.


Asunto(s)
Grafito , Peróxido de Hidrógeno , Iones , Plomo , Tiourea , Agua
5.
Front Immunol ; 12: 667343, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995399

RESUMEN

Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O2- can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bacterias/clasificación , Oxidación-Reducción , Superóxidos/metabolismo , Factores de Transcripción/metabolismo
6.
Sensors (Basel) ; 19(6)2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875888

RESUMEN

In this paper, Au and reduced graphene oxide (rGO) were successively deposited on fluorine-doped SnO2 transparent conductive glass (FTO, 1 × 2 cm) via a facile and one-step electrodeposition method to form a clean interface and construct a three-dimensional network structure for the simultaneous detection of nitrite and hydrogen peroxide (H2O2). For nitrite detection, 3D Au-rGO/FTO displayed a sensitivity of 419 µA mM-1 cm-2 and a linear range from 0.0299 to 5.74 mM, while for the detection of H2O2, the sensitivity was 236 µA mM-1 cm-2 and a range from 0.179 to 10.5 mM. The combined results from scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction measurements (XRD) and electrochemical tests demonstrated that the properties of 3D Au-rGO/FTO were attributabled to the conductive network consisting of rGO and the good dispersion of Au nanoparticles (AuNPs) which can provide better electrochemical properties than other metal compounds, such as a larger electroactive surface area, more active sites, and a bigger catalytic rate constant.

8.
Sensors (Basel) ; 17(10)2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-29065478

RESUMEN

Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2), reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN) mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT) prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD) 0.609 µM and sensitivity of 2.54 µA cm-2 mM-1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts.

9.
ACS Appl Mater Interfaces ; 9(36): 31142-31152, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28825459

RESUMEN

Metal nanowires (NWs) represent a prominent nanomaterial class, the interest in which is fueled by their tunable properties as well as their excellent performance in, for example, sensing, catalysis, and plasmonics. Synthetic approaches to obtain metal NWs mostly produce colloids or rely on templates. Integrating such nanowires into devices necessitates additional fabrication steps, such as template removal, nanostructure purification, or attachment. Here, we describe the development of a facile electroless plating protocol for the direct deposition of gold nanowire films, requiring neither templates nor complex instrumentation. The method is general, producing three-dimensional nanowire structures on substrates of varying shape and composition, with different seed types. The aqueous plating bath is prepared by ligand exchange and partial reduction of tetrachloroauric acid in the presence of 4-dimethylaminopyridine and formaldehyde. Gold deposition proceeds by nucleation of new grains on existing nanostructure tips and thus selectively produces curvy, polycrystalline nanowires of high aspect ratio. The nanofabrication potential of this method is demonstrated by producing a sensor electrode, whose performance is comparable to that of known nanostructures and discussed in terms of the catalyst architecture. Due to its flexibility and simplicity, shape-selective electroless plating is a promising new tool for functionalizing surfaces with anisotropic metal nanostructures.

10.
J Microbiol ; 55(6): 457-463, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28434086

RESUMEN

PerR, a member of Fur family protein, is a metal-dependent H2O2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerRBL, PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerRBL. PerRBL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerRBS. However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H2O2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerRBL and PerRBS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.


Asunto(s)
Bacillus licheniformis/crecimiento & desarrollo , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Hierro/metabolismo , Proteínas Represoras/genética , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Represoras/metabolismo , Sideróforos/metabolismo
11.
Biochem Biophys Res Commun ; 484(1): 125-131, 2017 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-28104400

RESUMEN

PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerRBL, PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerRBL in B. licheniformis. In vitro and in vivo studies indicate that PerRBL, like PerRBS, uses either Fe2+ or Mn2+ as a corepressor and only the Fe2+-bound form of PerRBL senses low levels of H2O2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H2O2 sensitivity, if any, between PerRBL and PerRBS, B. licheniformis expressing PerRBL or PerRBS could sense lower levels of H2O2 and was more sensitive to H2O2 than B. subtilis expressing PerRBL or PerRBS. This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerRBS and PerRBLper se, affect the H2O2 sensing ability of PerR inside the cell and the H2O2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerRSA), which is more sensitive to H2O2 than PerRBL and PerRBS, were more resistant to H2O2 than those expressing either PerRBL or PerRBS. This result indicates that the sufficient difference in H2O2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H2O2.


Asunto(s)
Bacillus licheniformis/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Represoras/metabolismo , Polarización de Fluorescencia , Histidina/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Oxidación-Reducción , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Biosens Bioelectron ; 80: 34-38, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26802750

RESUMEN

Solutions with large-scale dispersions of 2D black phosphorus (BP), often referred to as phosphorene, are obtained through solvent exfoliation. But, rapid phosphorene synthesis remains a challenge. Furthermore, although the chemical sensing capability of BP-based sensors has been theoretically predicted, its experimental verification remains lacking. In this study, we demonstrate the use of supercritical carbon dioxide-assisted rapid synthesis (5h) of few-layer BP. In addition, we construct a non-enzymatic hydrogen peroxide (H2O2) sensor based on few-layer BP for the first time to utilize BP degradation under ambient conditions. The proposed H2O2 sensor exhibits a considerably lower detection limit of 1 × 10(-7) M compared with the general detection limit of 1 × 10(-7) M-5 × 10(-5)M via electrochemical methods. Overall, the results of this study will not only expand the coverage of BP research but will also identify the important sensing characteristics of BP.


Asunto(s)
Técnicas Biosensibles , Dióxido de Carbono/química , Peróxido de Hidrógeno/aislamiento & purificación , Dióxido de Carbono/síntesis química , Técnicas Electroquímicas , Fósforo/química
13.
Int J Biol Macromol ; 82: 39-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26434518

RESUMEN

The study is aimed at detection of hydrogen peroxide (H2O2) using Acacia lignin mediated silver nanoparticles (AGNPs). The synthesis of AGNPs was achieved at conditions optimized as, 3 ml of 0.02% lignin and 1mM silver nitrate incubated for 30 min at 80°C and pH 9. Initial screening of AGNPs was performed by measuring the surface plasmon resonance peak at 410-430 nm using UV-vis spectrophotometer. Transmission electron microscopy, atomic force microscopy, X-ray diffraction and particle size analysis confirmed the spherical shaped face centered cubic structure and 10-50 nm size of AGNPs. The infrared spectroscopy study further revealed that the active functional groups present in lignin were responsible for the reduction of silver ions (Ag(+)) to metallic silver (Ag(0)). Lignin stabilized silver nanoparticles showed good sensitivity and a linear response over wide concentrations of H2O2 (10(-1) to 10(-6)M). Further, the in vitrocytotoxicity activity of the lignin mediated AGNPs (5-500 µg/ml) demonstrated toxicity effects in MCF-7 and A375 cell lines. Thus, lignin stabilized silver nanoparticles based optical sensor for H2O2 could be potentially applied in the determination of reactive oxygen species and toxic chemicals which further expands the importance of lignin stabilized silver nanoparticles.


Asunto(s)
Acacia/química , Técnicas Biosensibles , Peróxido de Hidrógeno/química , Lignina/química , Nanopartículas del Metal/química , Plata/química , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Lignina/toxicidad , Nanopartículas del Metal/ultraestructura , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
14.
Bioelectrochemistry ; 105: 25-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25978786

RESUMEN

We report a spectroscopic, electrochemical and spectroelectrochemical characterization of the soluble cytochrome c domain (Cyt-D) from the Rhodothermus marinus caa3 terminal oxygen reductase and its putative electron donor, a high potential [4Fe-4S] protein (HiPIP). Cyt-D exhibits superior stability, particularly at the level of the heme pocket, compared to archetypical cytochromes in terms of thermal and chemical denaturation, alkaline transition and oxidative bleaching of the heme, which is further increased upon adsorption on biomimetic electrodes. Therefore, this protein is proposed as a suitable building block for electrochemical biosensing. As a proof of concept, we show that the immobilized Cyt-D exhibits good electrocatalytic activity towards H2O2 reduction. Relevant thermodynamic and kinetic electron transfer parameters for Cyt-D and HiPIP are also reported, including reorganization energies of 0.33 eV and 0.42 eV, respectively.


Asunto(s)
Citocromos/metabolismo , Catálisis , Citocromos/química , Técnicas Electroquímicas , Estabilidad de Enzimas , Cinética , Oxidación-Reducción , Termodinámica
15.
Anal Chim Acta ; 853: 200-206, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25467459

RESUMEN

Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires-graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2-ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1-45.4 mM, with a detection limit of 10 µM (S/N=3) and detection sensitivity of 59.0 µA cm(-2) mM(-1). These outstanding sensing performances enable the practical application of MnO2-ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring.


Asunto(s)
Técnicas Electroquímicas , Grafito/química , Peróxido de Hidrógeno/análisis , Compuestos de Manganeso/química , Nanocables/química , Óxidos/química , Animales , Línea Celular , Electrodos , Ferricianuros/química , Peróxido de Hidrógeno/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Papel
16.
Biosensors (Basel) ; 4(4): 461-471, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25587434

RESUMEN

Bimetallic nanostructured core-shell structures are commonly used as catalysts in a wide variety of reactions. We surmised that the addition of an additional metal would potentially allow catalytic tailoring with the possibility of an increase in activity. Here a tri-metallic catalytic structure, consisting of clustered catalytic Pt on the surface of a Pd shell supported on a rod shaped Au core was fabricated. The significance of the additional metallic component is shown by comparative electrochemically active surface area (ECSA) analysis results for the trimetallic Aurod-Pdshell-Ptcluster, bimetallic Aurod-Ptcluster and monometallic JM-Pt (used as a reference), which have respective ECSA values (cm(2)/mgPt) of 1883.0, 1371.7 and 879. The potential utility of the trimetallic catalysts was shown in a hydrogen peroxide sensing protocol, which showed the catalyst to have a sensitivity of 604 ìA/mMcm(2) within a linear range of 0.0013-6.191 mM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA