Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 196: 106884, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197691

RESUMEN

Newcastle disease virus (NDV) is a highly infectious viral disease that impacts birds globally, especially domestic poultry. NDV is a type of avian paramyxovirus which poses a major threat to the poultry industry due to its ability to inflict significant economic damage. The membrane protein, Hemagglutinin-Neuraminidase (HN) of NDV is an attractive therapeutic candidate. It contributes to pathogenicity through various functions, such as promoting fusion and preventing viral self-agglutination, which allows for viral spread. In this study, we used pharmacophore modeling to identify natural molecules that can inhibit the HN protein of NDV. Physicochemical characteristics and phylogenetic analysis were determined to elucidate structural information and phylogeny of target protein across different species as well as members of the virus family. For structural analysis, the missing residues of HN target protein were filled and the structure was evaluated by PROCHECK and VERIFY 3D. Moreover, shape and feature-based pharmacophore model was employed to screen natural compounds' library through numerous scoring schemes. Top 48 hits with 0.8860 pharmacophore fit score were subjected towards structure-based molecular docking. Top 9 compounds were observed witihin the range of -8.9 to -7.5 kcal/mol binding score. Five best-fitting compounds in complex with HN receptor were subjected to predict biological activity and further analysis. Top two hits were selected for MD simulations to validate binding modes and structural stability. Finally, upon scrutinization, A1 (ZINC05223166) emerges as potential HN inhibitor to treat NDV, necessitating further validation via clinical trials.

2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39065734

RESUMEN

The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus (KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial importance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest Disease, caused by KFDV, is a tick-borne disease with a mortality of 3-5% and an annual incidence of 400 to 500 cases. In the early stage of infection, the envelope protein plays a crucial role by facilitating host-virus interactions. The objective of this research is to develop effective antivirals targeting the envelope protein to disrupt the virus-host interaction. In line with this, the 3D structure of the envelope protein was modeled and refined through molecular modeling techniques, and subsequently, ligands were designed via de novo design and pharmacophore screening, yielding 12 potential hits followed by ADMET analysis. The top five candidates underwent geometry optimization and molecular docking. Notably, compounds L4 (SA28) and L3 (CNP0247967) are predicted to have significant binding affinities of -8.91 and -7.58 kcal/mol, respectively, toward the envelope protein, based on computational models. Both compounds demonstrated stability during 200 ns molecular dynamics simulations, and the MM-GBSA binding free-energy values were -85.26 ± 4.63 kcal/mol and -66.60 ± 2.92 kcal/mol for the envelope protein L3 and L4 complexes, respectively. Based on the computational prediction, it is suggested that both compounds have potential as drug candidates for controlling host-virus interactions by targeting the envelope protein. Further validation through in-vitro assays would complement the findings of the present in silico investigations.

3.
Food Sci Nutr ; 12(2): 815-829, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370064

RESUMEN

Pinobanksin, as one of the flavonoids, has powerful biological activities but has been under-recognized. In this study, we optimized the extraction method of phragmites from peony seed shells by using organic solvent extraction. The yield of PSMS was 10.54 ± 0.13% under the conditions of ethanol volume fraction 70%, extraction temperature 70°C, material-liquid ratio 1:25 g/mL, and extraction time 60 min; the optimized PSMS could be effectively separated in S-8 macroporous resin coupled with C18. The relative content of PSMS was increased from 0.42% in PSMS to 92.53% after C18 purification; the antioxidant activity test revealed that pinobanksin could exert antioxidant ability by binding catalase (CAT) enzyme. Second, it was found that pinobanksin could effectively inhibit the proliferation of SH-SY5Y cells, mainly by binding to BCL2-associated X (BAX), B-cell lymphoma-2 (BCL-2), and cyclin-dependent Kinase 4/6 (CDK4/6) to produce more hydrogen bonds to inhibit their activities. This study confirms the medicinal potential of pinobanksin and provides the basis for the proper understanding of pinobanksin and the development of related products.

4.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063080

RESUMEN

The therapeutic potential of small molecule kinase inhibitors in cancer treatment is well recognized. However, achieving selectivity remains a formidable challenge, primarily due to the structural similarity of ATP binding pockets among kinases. Allosteric inhibition, which involves targeting binding pockets beyond the ATP-binding site, provides a promising alternative to overcome this challenge. In this study, a meticulous approach was implemented to prioritize type 3 inhibitors for LIMK2, employing a range of techniques including Molecular Dynamics (MD) simulations, e-pharmacophore-guided High Throughput Virtual Screening (HTVS), MM/GBSA and ADMETox analyses, Density Functional Theory (DFT) calculations, and MM/PBSA investigations. The e-pharmacophore model identifies a hypothesis featuring five essential pharmacophoric elements (RRRAH). Through virtual screening of the ZINC compound database, we identified only five compounds that align with all four pharmacophoric features: ZINC1044382792, ZINC1433610865, ZINC1044109145, ZINC952869440, and ZINC490621334. These compounds not only exhibit higher binding affinity but also demonstrate favorable ADME/Tox profiles. Molecular dynamics simulations underscore the stability of hydrogen bond interactions with critical cryptic LIMK2 pocket residues, Asp469 and Arg474, only for two compounds: ZINC143361086 and ZINC1044382792. These compounds also exhibit superior occupancy interactions, as indicated by HOMO-LUMO analysis. Additionally, binding free energy calculations highlight the significant affinities of these two compounds when complexed with LIMK2: -83.491 ± 1.230 kJ/mol and -90.122 ± 1.248 kJ/mol for ZINC1044382792 and ZINC1433610862, respectively. Hence, this comprehensive investigation identifies ZINC1433610862 and ZINC1044382792 as prospective hits, representing promising leads for targeting LIMK2 in cancer therapeutics.Communicated by Ramaswamy H. Sarma.

5.
Biomolecules ; 13(2)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36830654

RESUMEN

Microtubules are highly dynamic polymers of α,ß-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Tubulina (Proteína) , Ligandos , Antineoplásicos/química , Microtúbulos , Neoplasias/tratamiento farmacológico
6.
Molecules ; 27(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956836

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is increasingly considered as an attractive therapeutic target for cancer as well as other diseases. However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study, pharmacophore screening, homology modeling, and molecular docking methods were adopted to screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and then cytotoxicity assay and western blotting were performed to verify the validity of the screen. Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally, molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and anticancer therapy.


Asunto(s)
Quinasa del Factor 2 de Elongación , Medicina Tradicional China , Neoplasias , Simulación por Computador , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Técnicas In Vitro , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Fosforilación
7.
Cell Biol Int ; 46(11): 1801-1813, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35925004

RESUMEN

Oleanolic acid (OA) and its derivatives show potent anticancer function. Pancreatic cancer (PC) is the fourth core motive of cancer-related deaths worldwide. Epidermal growth factor receptor (EGFR) has been implicated in PC and has been validated as a therapeutic target. Our study demonstrated that K73-03, an OA derivative, was identified as a potent inhibitor of EGFR by using reverse pharmacophore screening and molecular dynamics simulation assays. Moreover, Western blot analysis showed that K73-03 markedly suppressed the levels of phosphorylated-EGFR (p-EGFR) and phosphorylated-Akt (p-Akt). The inhibitory effect of K73-03 on PC cells was assessed in vitro and in vivo. Mechanistically, K73-03 effectively inhibited the cell proliferation of PC cells, and induced apoptosis and autophagy of ASPC-1 cells in a dose-dependent manner. Additionally, pretreatment with chloroquine, an autophagy inhibitor, significantly inhibited K73-03-induced autophagy and enhanced K73-03-induced apoptotic cell death. K73-03 also strongly repressed ASPC-1 cells xenograft growth in vivo. Thus, all these findings provided new clues about OA analog K73-03 as an effective anticancer agent targeted EGFR against ASPC-1 cells, it is worth further evaluation in the future.


Asunto(s)
Antineoplásicos , Ácido Oleanólico , Neoplasias Pancreáticas , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Cloroquina/farmacología , Receptores ErbB/metabolismo , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
8.
Chem Biol Drug Des ; 99(6): 839-856, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35278346

RESUMEN

Antibiotics and disinfectants resistance is acquired by activating RecA-mediated DNA repair, which maintains ROS-dependent DNA damage caused by the antimicrobial molecules. To increase the efficacy of different antimicrobials, an inhibitor can be developed against RecA protein. The present study aims to design a denovo inhibitor against RecA protein of Acinetobacter baumannii. Pharmacophore-based screening, molecular mechanics, molecular dynamics simulation (MDS), retrosynthetic analysis, and combinatorial synthesis were used to design lead VTRA1.1 against RecA of A. baumannii. Pharmacophore models (structure-based and ligand-based) were created, and a phase library of FDA-approved drugs was prepared. Screening of the phase library against these pharmacophore models selected thirteen lead molecules. These filtered leads were used for the denovo fragment-based design, which produced 253 combinations. These designed molecules were further analyzed for its interaction with active site of RecA that selected a hybrid VTRA1. Further, retrosynthetic analysis and combinatorial synthesis produced 1000 analogs of VTRA1 by more than 100 modifications. These analogs were used for XP docking, binding free energy calculation, and MDS analysis which finally select lead VTRA1.1 against RecA protein. Further, mutations at the interacting residues of RecA with VTRA1.1, alter the unfolding rate of RecA, which suggests the binding of VTRA1.1 to these residues may alter the stability of RecA. It is also found that VTRA1.1 had reduced interaction of RecA with LexA and ssDNA polydT, showing the lead's efficacy in controlling the SOS response. Further, it was also observed that VTRA1.1 does not contain any predicted human off-targets and no cytotoxicity to cell lines. As functional RecA is involved in antimicrobial resistance, denovo designed lead VTRA1.1 against RecA may be further developed as a significant combination for therapeutic uses against A. baumannii.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Reparación del ADN , Humanos , Simulación de Dinámica Molecular , Rec A Recombinasas/química , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
9.
Mol Divers ; 26(5): 2613-2629, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35000060

RESUMEN

Several existing drugs have gained initial consideration due to their therapeutic characteristics against COVID-19 (Corona Virus Disease 2019). Hydroxychloroquine (HCQ) was proposed as possible therapy for shortening the duration of COVID-19, but soon after this, it was discarded. Similarly, known antiviral compounds were also proposed and investigated to treat COVID-19. We report a pharmacophore screening using essential chemical groups derived from HCQ and known antivirals to search a natural compound chemical space. Molecular docking of HCQ under physiological condition with spike protein, 3C-like protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) of SARS-CoV2 showed - 8.52 kcal/mole binding score with RdRp, while the other two proteins showed relatively weaker binding affinity. Docked complex of RdRp-HCQ is further examined using 100 ns molecular dynamic simulation. Docking and simulation study confirmed active chemical moieties of HCQ, treated as 6-point pharmacophore to screen ZINC natural compound database. Pharmacophore screening resulted in the identification of potent hit molecule [(3S,3aR,6R,6aS)-3-(5-phenylsulfanyltetrazol-1-yl)-2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-6-yl]N-naphthalen-ylcarbamate from natural compound library. Additionally, a set of antiviral compounds with similar chemical scaffolds are also used to design a separate ligand-based pharmacophore screening. Antiviral pharmacophore screening produced a potent hit 4-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-(2-hydroxyphenyl)methyl]-1,5-dimethyl-2-phenylpyrazol-3-one containing essential moieties that showed affinity towards RdRp. Further, both these screened compounds are docked (- 8.69 and - 8.86 kcal/mol) and simulated with RdRp protein for 100 ns in explicit solvent medium. They bind at the active site of RdRp and form direct/indirect interaction with ASP618, ASP760, and ASP761 catalytic residues of the protein. Successively, their molecular mechanics Poisson Boltzmann surface area (MMPBSA) binding energies are calculated over the simulation trajectory to determine the dynamic atomistic interaction details. Overall, this study proposes two key natural chemical moieties: (a) tetrazol and (b) phenylpyrazol that can be investigated as a potential chemical group to design inhibitors against SARS-CoV2 RdRp.


Asunto(s)
COVID-19 , ARN Polimerasa Dependiente del ARN , Antivirales/química , Antivirales/farmacología , Furanos , Humanos , Hidroxicloroquina , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/metabolismo , ARN Viral , SARS-CoV-2 , Solventes , Glicoproteína de la Espiga del Coronavirus , Zinc
10.
J Biomol Struct Dyn ; 40(1): 499-507, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32876545

RESUMEN

Virtual screening refers to the screening of active compounds based on a small-molecule database. This procedure can rapidly select active compounds with pharmaceutical properties from millions of molecules, thus considerably reducing the number of experimental screening compounds and cost of drug development and shortening the research cycle. In this paper, a pharmacophore screening method was used for virtual screening to determine new scaffold compounds with potential anticoagulant activities. The pharmacophore model (Model_01-20) was constructed in SYBYL-X 2.0 based on dabigatran derivatives (D1-D9) with micromolar to nanomolar activities and tested by decoy test method. Model_01 was selected to screen more than 1600 million compounds in the Zinc 12.0 database. Furtherly, molecular docking analysis and ADME prediction were conducted on more than 100,000 screened compounds. Finally, two compounds (Z-19 and Z-29) were selected for anticoagulant activity test in vitro, Compound Z-29 with tryptophan aurone structure was found possess anticoagulant effect and its IC50 = 22.9 ± 6.88 µM. ADME prediction results show that compound Z-29 features a high intestinal absorption rate, which is valuable for further in-depth research. The research results of this paper can be used for further structural modification and optimisation to guide the design and provide new ideas and methods for the discovery of new thrombin inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Trombina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Esqueleto
11.
J Biomol Struct Dyn ; 40(1): 297-311, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32886033

RESUMEN

Designing dual small molecule inhibitors against enzymes associated with cancer has turned into a new strategy in cancer chemotherapy. Targeting DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzymes, involved in epigenetic modifications, are considered as promising treatments for a wide range of cancers, due to their association with the initiation, proliferation, and survival of cancer cells. In this study, for the first time, the dual inhibitors of the histone deacetylases 8 (HDAC8) and DNA methyltransferase 1 (DNMT1) has introduced as novel potential candidates for epigenetic-based cancer therapeutics. This research has been facilitated by employing pharmacophore-based virtual screening of ZINC and Maybridge databases, as well as performing molecular docking, molecular dynamics simulations and free binding energy calculation on the top derived compound. Results have demonstrated that the suggested compounds not only adopt highly favorable conformations but also possess strong binding interaction with the HDAC8 enzyme. Additionally, the obtained results from the experimental assay confirmed the predicted behavior of inhibitors from virtual screening. These results can be used for further optimization to yield promising more effective candidates for the treatment of cancer.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias , Epigénesis Genética , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/genética
12.
J Biomol Struct Dyn ; 40(21): 11418-11433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34355665

RESUMEN

Drug repositioning has recently become one of the widely used drug design approaches in proposing alternative compounds with potentially fewer side effects. In this study, structure-based pharmacophore modelling and docking was used to screen existing drug molecules to bring forward potential modulators for ligand-binding domain of human glucocorticoid receptor (hGR). There exist several drug molecules targeting hGR, yet their apparent side effects still persist. Our goal was to disclose new compounds via screening existing drug compounds to bring forward fast and explicit solutions. The so-called shared pharmacophore model was created using the most persistent pharmacophore features shared by several crystal structures of the receptor. The shared model was first used to screen a small database of 75 agonists and 300 antagonists/decoys, and exhibited a successful outcome in its ability to distinguish agonists from antagonists/decoys. Then, it was used to screen a database of over 5000 molecules composed of FDA-approved, worldwide used and investigational drug compounds. A total of 110 compounds satisfying the pharmacophore requirements were subjected to different docking experiments for further assessment of their binding ability. In the final hit list of 54 compounds which fulfilled all scoring criteria, 19 of them were nonsteroidal and when further investigated, each presented a unique scaffold with little structural resemblance to any known nonsteroidal GR modulators. Independent 100 ns long MD simulations conducted on three selected drug candidates in complex with hGR displayed stable conformations incorporating several hydrogen bonds common to all three compounds and the reference molecule dexamethasone.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Reposicionamiento de Medicamentos , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Receptores de Glucocorticoides , Simulación de Dinámica Molecular , Ligandos
13.
Comput Struct Biotechnol J ; 19: 6050-6063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34849208

RESUMEN

The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in modulating metabolic and anti-inflammatory processes. Recent implications of its role in cancer progression have presented GPR120 as an attractive oncogenic drug target. GPR120 gene knockdown in breast cancer studies revealed a role of GPR120-induced chemoresistance in epirubicin and cisplatin-induced DNA damage in tumour cells. Higher expression and activation levels of GPR120 is also reported to promote tumour angiogenesis and cell migration in colorectal cancer. Some agonists targeting GPR120 have been reported, such as TUG891 and Compound39, but to date development of small-molecule inhibitors of GPR120 is limited. Herein, following homology modelling of the receptor a pharmacophore hypothesis was derived from 300 ns all-atomic molecular dynamics (MD) simulations on apo, TUG891-bound and Compound39-bound GPR120S (short isoform) receptor models embedded in a water solvated lipid bilayer system. We performed comparative MD analysis on protein-ligand interactions between the two agonist and apo simulations on the stability of the "ionic lock" - a Class A GPCRs characteristic of receptor activation and inactivation. The detailed analysis predicted that ligand interactions with W277 and N313 are critical to conserve the "ionic-lock" conformation (R136 of Helix 3) and prevent GPR120S receptor activation. The results led to generation of a W277 and N313 focused pharmacophore hypothesis and the screening of the ZINC15 database using ZINCPharmer through the structure-based pharmacophore. 100 ns all-atomic molecular dynamics (MD) simulations were performed on 9 small molecules identified and Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) was predicted to be a small-molecule GPR120S antagonist. The conformational results from the collective all-atomic MD analysis provided structural information for further identification and optimisation of novel druggable inhibitors of GPR120S using this rational design approach, which could have future potential for anti-cancer drug development studies.

14.
Bioorg Med Chem Lett ; 31: 127639, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129991

RESUMEN

Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the transient receptor potential family, detects a wide range of environmental stimuli, such as low temperature, abnormal pH, and reactive irritants. TRPA1 is of great interest as a target protein in fields related to pharmaceuticals and foods. In this study, a library of natural products was explored to identify TRPA1 activators by pharmacophore screening of known TRPA1 agonists and biological assays for agonist activity. The study identified six natural compounds as novel TRPA1 agonists. The discovery of these compounds may prove useful in elucidating the TRPA1 activation mechanism.


Asunto(s)
Productos Biológicos/farmacología , Descubrimiento de Drogas , Canal Catiónico TRPA1/agonistas , Productos Biológicos/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , Relación Estructura-Actividad
15.
Am J Transl Res ; 12(11): 7127-7143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312355

RESUMEN

Selaginella tamariscina (ST), a well-known traditional medicinal plant, has been used to treat various cancers, including pancreatic cancer. However, the underlying mechanism by which Selaginellin B, a natural pigment isolated and purified from ST, protects against pancreatic cells has yet to be fully elucidated. In the present study, the biological functions of Selaginellin B were investigated using apoptosis, migration and colony formation assays in ASPC-1 and PANC-1 cells. In addition, apoptosis-associated proteins were detected by Western blotting. Our results demonstrated that Selaginellin B induced apoptosis, as evidenced by the increased cleaved caspase-3 level and Bax/Bcl-2 ratio. Moreover, Selaginellin B led to a marked up-regulation of the ratio of LC3-II/LC3-I in ASPC-1 and PANC-1 cells, respectively. Furthermore, reverse pharmacophore screening, molecular docking and molecular dynamics simulation studies revealed that Janus kinase 2 (JAK2) may be a potential target for Selaginellin B. In summary, the results of the present research have demonstrated that Selaginellin B is an effective anticancer agent against PANC-1 and ASPC-1 cells, and the compound holds great promise for the treatment of pancreatic cancer.

16.
Comput Biol Chem ; 86: 107249, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32199335

RESUMEN

For a long time, the structural basis of TXA2 receptor is limited due to the lack of crystal structure information, till the release of the crystal structure of TXA2 receptor, which deepens our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. In this research, we report the successful implementation in the discovery of an optimal pharmacophore model of human TXA2 receptor antagonists through virtual screening. Structure-based pharmacophore models were generated based on two crystal structures of human TXA2 receptor (PDB entry 6IIU and 6IIV). Docking simulation revealed interaction modes of the virtual screening hits against TXA2 receptor, which was validated through molecular dynamics simulation and binding free energy calculation. ADMET properties were also analyzed to evaluate the toxicity and physio-chemical characteristics of the hits. The research would provide valuable insight into the binding mechanisms of TXA2 receptor antagonists and thus be helpful for designing novel antagonists.


Asunto(s)
Receptores de Tromboxano A2 y Prostaglandina H2/antagonistas & inhibidores , Receptores de Tromboxano A2 y Prostaglandina H2/química , Sitios de Unión , Descubrimiento de Drogas , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa
17.
Comput Biol Chem ; 78: 178-189, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30557816

RESUMEN

PPARα and PPARγ play an important role in regulating glucose and lipid metabolism. The single and selective PPARα or PPARγ agonists have caused several side effects such as edema, weight gain and cardiac failure. In the recent years, the dual PPARs agonist development has become a hot topic in the antidiabetic medicinal chemistry field. In this paper, the compound CHEMBL230490 were gained from CHEMBL database, by means of complex-based pharmacophore (CBP) virtual screening, molecular docking, ADMET prediction and molecular dynamics (MD) simulations. The compound CHEMBL230490 not only displayed higher binding scores and better binding modes with the active site of PPARα a/γ, but also had more favorable the pharmacokinetic properties and toxicity evaluated by ADMET prediction. The representative compound CHEMBL230490 was performed to MDs for studying a stable binding conformation. The results indicated that the CHEMBL230490 might be a potential antidiabetic lead compound. The research provided a valuable approach in developing novel PPARα/γ dual agonists for the treatment of type 2 diabetes mellitus (T2DM).


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/química , PPAR alfa/agonistas , PPAR gamma/agonistas , Bibliotecas de Moléculas Pequeñas/química , Evaluación Preclínica de Medicamentos , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico
18.
Bioorg Med Chem Lett ; 25(6): 1249-53, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25677660

RESUMEN

The glycoprotein IIb/IIIa receptor is the final common pathway of platelet aggregation, regardless of the agonist, and thus represents an ideal therapeutic target for blocking thrombus formation. RUC-2 is a novel glycoprotein IIb/IIIa inhibitor of adenosine-5'-diphosphate (ADP)-induced platelet aggregation, importantly which exhibits a unique mode of binding with respect to classical Arg-Gly-Asp (RGD)-based glycoprotein IIb/IIIa antagonists. To identify new chemotypes that inhibit glycoprotein IIb/IIIa-mediated platelet aggregation like RUC-2, we performed a combination of structure-based pharmacophore screening and structure-based virtual screening approach to screen over 7.3 million small molecules based on the RUC-2-glycoprotein IIb/IIIa crystal structure. Three of the eleven hit compounds identified by virtual screening showed promising activity with IC50 values between 16.9 and 90.6µmolL(-1) in a human platelet aggregation assay induced by ADP and thrombin. The binding conformations of these three were analyzed to provide a rationalization of their activity profile. These compounds may serve as potential novel scaffolds for further development of glycoprotein IIb/IIIa antagonists.


Asunto(s)
Inhibidores de Agregación Plaquetaria/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Bases de Datos de Proteínas , Evaluación Preclínica de Medicamentos , Simulación de Dinámica Molecular , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Estructura Terciaria de Proteína
19.
J Pharm Pharmacol ; 66(1): 84-92, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24138287

RESUMEN

OBJECTIVES: Peroxisome proliferator-activated receptors (PPAR)-α plays an important role in epidermal differentiation and barrier recovery, and topical treatment with PPAR-α agonists restores epidermal homeostasis in essential fatty acid deficiency and permeability barrier in skin disruptions. Therefore, we performed structure-based pharmacophore screening to search for a novel PPAR-α agonist. Caffeic acid was ultimately selected and evaluated for its effects on keratinocyte differentiation and epidermal permeability barrier. METHODS: The transactivation activity of PPAR-responsive element (PPRE) and cornified envelope (CE) formation were assayed. Also, immunoblot analysis and anti-oxidant activity were investigated on caffeic acid. KEY FINDINGS: Caffeic acid increases the transactivation activity of PPRE and CE formation in keratinocytes. In addition, caffeic acid promotes the expression of genes and proteins related to CE formation such as involucrin and transglutaminase-1. Additionally, anti-oxidant activity were improved by caffeic acid. CONCLUSIONS: Caffeic acid can promote keratinocyte differentiation and restore skin barrier homeostasis and is suggested to be an appropriate skin therapeutic agent for improving epidermal permeability barrier function.


Asunto(s)
Ácidos Cafeicos/farmacología , Diferenciación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , PPAR gamma/metabolismo , Antioxidantes/farmacología , Diferenciación Celular/genética , Línea Celular , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Humanos , Queratinocitos/metabolismo , PPAR gamma/agonistas , PPAR gamma/genética , Permeabilidad/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Transglutaminasas/genética , Transglutaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA