Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.570
Filtrar
1.
G3 (Bethesda) ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099140

RESUMEN

We present a novel approach to genome-wide association studies (GWAS) by leveraging unstructured, spoken phenotypic descriptions to identify genomic regions associated with maize traits. Utilizing the Wisconsin Diversity panel, we collected spoken descriptions of Zea mays ssp. mays traits, converting these qualitative observations into quantitative data amenable to GWAS analysis. First, we determined that visually striking phenotypes could be detected from unstructured spoken phenotypic descriptions. Next, we developed two methods to process the same descriptions to derive the trait plant height, a well-characterized phenotypic feature in maize: (1) a semantic similarity metric that assigns a score based on the resemblance of each observation to the concept of 'tallness' and (2) a manual scoring system that categorizes and assigns values to phrases related to plant height. Our analysis successfully corroborated known genomic associations and uncovered novel candidate genes potentially linked to plant height. Some of these genes are associated with gene ontology terms that suggest a plausible involvement in determining plant stature. This proof-of-concept demonstrates the viability of spoken phenotypic descriptions in GWAS and introduces a scalable framework for incorporating unstructured language data into genetic association studies. This methodology has the potential not only to enrich the phenotypic data used in GWAS and to enhance the discovery of genetic elements linked to complex traits but also to expand the repertoire of phenotype data collection methods available for use in the field environment.

2.
Front Plant Sci ; 15: 1395558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129764

RESUMEN

Milk thistle, Silybum marianum (L.), is a well-known medicinal plant used for the treatment of liver diseases due to its high content of silymarin. The seeds contain elaiosome, a fleshy structure attached to the seeds, which is believed to be a rich source of many metabolites including silymarin. Segmentation of elaiosomes using only image analysis is difficult, and this makes it impossible to quantify the elaiosome phenotypes. This study proposes a new approach for semi-automated detection and segmentation of elaiosomes in milk thistle seed using the Detectron2 deep learning algorithm. One hundred manually labeled images were used to train the initial elaiosome detection model. This model was used to predict elaiosome from new datasets, and the precise predictions were manually selected and used as new labeled images for retraining the model. Such semi-automatic image labeling, i.e., using the prediction results of the previous stage for retraining the model, allowed the production of sufficient labeled data for retraining. Finally, a total of 6,000 labeled images were used to train Detectron2 for elaiosome detection and attained a promising result. The results demonstrate the effectiveness of Detectron2 in detecting milk thistle seed elaiosomes with an accuracy of 99.9%. The proposed method automatically detects and segments elaiosome from the milk thistle seed. The predicted mask images of elaiosome were used to analyze its area as one of the seed phenotypic traits along with other seed morphological traits by image-based high-throughput phenotyping in ImageJ. Enabling high-throughput phenotyping of elaiosome and other seed morphological traits will be useful for breeding milk thistle cultivars with desirable traits.

3.
J Biomed Inform ; : 104705, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134233

RESUMEN

OBJECTIVE: Phenotypic misclassification in genetic association analyses can impact the accuracy of PRS-based prediction models. The bias reduction method proposed by Tong et al. (2019) has demonstrated its efficacy in reducing the effects of bias on the estimation of association parameters between genotype and phenotype while minimizing variance by employing chart reviews on a subset of the data for validating phenotypes, however its improvement of subsequent PRS prediction accuracy remains unclear. Our study aims to fill this gap by assessing the performance of simulated PRS models and estimating the optimal number of chart reviews needed for validation. METHODS: To comprehensively assess the efficacy of the bias reduction method proposed by Tong et al. in enhancing the accuracy of PRS-based prediction models, we simulated each phenotype under different correlation structures (an independent model, a weakly correlated model, a strongly correlated model) and introduced error-prone phenotypes using two distinct error mechanisms (differential and non-differential phenotyping errors). To facilitate this, we used genotype and phenotype data from 12 case-control datasets in the Alzheimer's Disease Genetics Consortium (ADGC) to produce simulated phenotypes. The evaluation included analyses across various misclassification rates of original phenotypes as well as quantities of validation set. Additionally, we determined the median threshold, identifying the minimal validation size required for a meaningful improvement in the accuracy of PRS-based predictions across a broad spectrum. RESULTS: This simulation study demonstrated that incorporating chart review does not universally guarantee enhanced performance of PRS-based prediction models. Specifically, in scenarios with minimal misclassification rates and limited validation sizes, PRS models utilizing debiased regression coefficients demonstrated inferior predictive capabilities compared to models using error-prone phenotypes. Put differently, the effectiveness of the bias reduction method is contingent upon the misclassification rates of phenotypes and the size of the validation set employed during chart reviews. Notably, when dealing with datasets featuring higher misclassification rates, the advantages of utilizing this bias reduction method become more evident, requiring a smaller validation set to achieve better performance. CONCLUSION: This study highlights the importance of choosing an appropriate validation set size to balance between the efforts of chart review and the gain in PRS prediction accuracy. Consequently, our study establishes a valuable guidance for validation planning, across a diverse array of sensitivity and specificity combinations.

4.
Psychiatry Res ; 340: 116104, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39137558

RESUMEN

We sought to derive an objective measure of psychomotor slowing from speech analytics during a psychiatric interview to avoid potential burden of dedicated neurophysiological testing. Speech latency, which reflects response time between speakers, shows promise from the literature. Speech data was obtained from 274 subjects with a diagnosis of bipolar I depression enrolled in a randomized, doubleblind, 6-week phase 2 clinical trial. Audio recordings of structured Montgomery-Åsberg Depression Rating Scale (MADRS) interviews at 6 time points were examined (k = 1,352). We evaluated speech latencies, and other aspects of speech, for temporal stability, convergent validity, sensitivity/responsivity to clinical change, and generalization across seven socio-linguistically diverse countries. Speech latency was minimally associated with demographic features, and explained nearly a third of the variance in depression (categorically defined). Speech latency significantly decreased as depression symptoms improved over time, explaining nearly 20 % of variance in depression remission. Classification for differentiating people with versus without concurrent depression was high (AUCs > 0.85) both cross-sectionally and longitudinally. Results replicated across countries. Other speech features offered modest incremental contribution. Neurophysiological speech parameters with face validity can be derived from psychiatric interviews without the added patient burden of additional testing.

5.
Comput Biol Med ; 180: 108997, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137674

RESUMEN

Traumatic Brain Injury (TBI) presents a broad spectrum of clinical presentations and outcomes due to its inherent heterogeneity, leading to diverse recovery trajectories and varied therapeutic responses. While many studies have delved into TBI phenotyping for distinct patient populations, identifying TBI phenotypes that consistently generalize across various settings and populations remains a critical research gap. Our research addresses this by employing multivariate time-series clustering to unveil TBI's dynamic intricates. Utilizing a self-supervised learning-based approach to clustering multivariate time-Series data with missing values (SLAC-Time), we analyzed both the research-centric TRACK-TBI and the real-world MIMIC-IV datasets. Remarkably, the optimal hyperparameters of SLAC-Time and the ideal number of clusters remained consistent across these datasets, underscoring SLAC-Time's stability across heterogeneous datasets. Our analysis revealed three generalizable TBI phenotypes (α, ß, and γ), each exhibiting distinct non-temporal features during emergency department visits, and temporal feature profiles throughout ICU stays. Specifically, phenotype α represents mild TBI with a remarkably consistent clinical presentation. In contrast, phenotype ß signifies severe TBI with diverse clinical manifestations, and phenotype γ represents a moderate TBI profile in terms of severity and clinical diversity. Age is a significant determinant of TBI outcomes, with older cohorts recording higher mortality rates. Importantly, while certain features varied by age, the core characteristics of TBI manifestations tied to each phenotype remain consistent across diverse populations.

6.
Plant Methods ; 20(1): 118, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095828

RESUMEN

BACKGROUND: Root systems are key contributors to plant health, resilience, and, ultimately, yield of agricultural crops. To optimize plant performance, phenotyping trials are conducted to breed plants with diverse root traits. However, traditional analysis methods are often labour-intensive and invasive to the root system, therefore limiting high-throughput phenotyping. Spectral electrical impedance tomography (sEIT) could help as a non-invasive and cost-efficient alternative to optical root analysis, potentially providing 2D or 3D spatio-temporal information on root development and activity. Although impedance measurements have been shown to be sensitive to root biomass, nutrient status, and diurnal activity, only few attempts have been made to employ tomographic algorithms to recover spatially resolved information on root systems. In this study, we aim to establish relationships between tomographic electrical polarization signatures and root traits of different fine root systems (maize, pinto bean, black bean, and soy bean) under hydroponic conditions. RESULTS: Our results show that, with the use of an optimized data acquisition scheme, sEIT is capable of providing spatially resolved information on root biomass and root surface area for all investigated root systems. We found strong correlations between the total polarization strength and the root biomass ( R 2 = 0.82 ) and root surface area ( R 2 = 0.8 ). Our findings suggest that the captured polarization signature is dominated by cell-scale polarization processes. Additionally, we demonstrate that the resolution characteristics of the measurement scheme can have a significant impact on the tomographic reconstruction of root traits. CONCLUSION: Our findings showcase that sEIT is a promising tool for the tomographic reconstruction of root traits in high-throughput root phenotyping trials and should be evaluated as a substitute for traditional, often time-consuming, root characterization methods.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39127104

RESUMEN

Artificial intelligence (AI) and machine learning (ML) research within medicine has been exponentially increasing over the last decade, with studies showcasing the potential of AI/ML algorithms to improve clinical practice and outcomes. Ongoing research and efforts to develop AI-based models have expanded to aid in the identification of inborn errors of immunity (IEI). The utilization of larger electronic health record (EHR) datasets, coupled with advances in phenotyping precision and enhancements in ML techniques, has the potential to significantly improve the early recognition of IEI, thereby increasing access to equitable care. In this review, we provide a comprehensive examination of AI/ML for IEI, covering the spectrum from data preprocessing for AI/ML analysis to current applications within immunology, and address the challenges associated with implementing clinical decision support systems (CDSS) to refine the diagnosis and management of IEI.

8.
G3 (Bethesda) ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129203

RESUMEN

Striga hermonthica (Del.) Benth., a parasitic weed, causes substantial yield losses in maize production in sub-Saharan Africa (SSA). Breeding for Striga resistance in maize is constrained by limited genetic diversity for Striga resistance within the elite germplasm and phenotyping capacity under artificial Striga infestation. Genomics-enabled approaches have the potential to accelerate identification of Striga resistant lines for hybrid development. The objectives of this study were to evaluate the accuracy of genomic selection for traits associated with Striga resistance and grain yield (GY) and to predict genetic values of tested and untested doubled haploid (DH) maize lines. We genotyped 606 DH lines with 8,439 rAmpSeq markers. A training set of 116 DH lines crossed to two testers was phenotyped under artificial Striga infestation at three locations in Kenya. Heritability for Striga resistance parameters ranged from 0.38‒0.65 while that for GY was 0.54. The prediction accuracies for Striga resistance-associated traits across locations, as determined by cross validation (CV) were 0.24 to 0.53 for CV0 and from 0.20 to 0.37 for CV2. For GY, the prediction accuracies were 0.59 and 0.56 for CV0 and CV2, respectively. The results revealed 300 DH lines with desirable genomic estimated breeding values (GEBVs) for reduced number of emerged Striga plants (STR) at 8, 10, and 12 weeks after planting. The GEBVs of DH lines for Striga resistance associated traits in the training and testing sets were similar in magnitude. These results highlight the potential application of genomic selection in breeding for Striga resistance in maize. The integration of genomic-assisted strategies and DH technology for line development coupled with forward breeding for major adaptive traits will enhance genetic gains in breeding for Striga resistance in maize.

9.
J Anim Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132682

RESUMEN

Endemic and epidemic outbreaks of porcine reproductive and respiratory syndrome virus (PRRSV) are causing large economic losses in commercial pig production worldwide. Given the complexity of controlling this disease with vaccines or other biosecurity measures, the selection for pigs with a natural resilience to this infection has been proposed as an alternative approach. In this context, we previously reported a vaccine-based protocol to classify 6-week-old female piglets from one farm into resilient and susceptible phenotypes. Subsequent analysis showed that resilient sows had fewer lost piglets during a PRRSV epidemic. In the present study, we validated the results in four additional farms by showing a robust effect on the percentage of piglets lost (P<0.05). We were able to associate the resilient phenotype with a 2-4% reduction in piglet losses on sow farms in both endemic and endemic/epidemic situations. Also consistent with previous results, susceptible sows delivered on average, almost 0.5 more piglets born per parity (P<0.05). However, we show here that resilient sows have a longer stayability in the farm (+57 d; P<0.05) and +0.3 more successful parities (P<0.05), which balances the total number of piglets born and born alive in the full productive life of the sow between the two groups. Resilient sows thus contribute towards to a more sustainable production system, reducing sow replacement and piglet mortality. The validation of this protocol on four independent production farms paves the way for the study of the genetic variation underlying the resilient/susceptible classification, with a view to incorporating this information into selection programs in the future.

10.
Front Plant Sci ; 15: 1436120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148622

RESUMEN

Understanding the complex interactions between genotype-environment dynamics is fundamental for optimizing crop improvement. However, traditional phenotyping methods limit assessments to the end of the growing season, restricting continuous crop monitoring. To address this limitation, we developed a methodology for spatiotemporal registration of time-series 3D point cloud data, enabling field phenotyping over time for accurate crop growth tracking. Leveraging multi-scan terrestrial laser scanning (TLS), we captured high-resolution 3D LiDAR data in a cotton breeding field across various stages of the growing season to generate four-dimensional (4D) crop models, seamlessly integrating spatial and temporal dimensions. Our registration procedure involved an initial pairwise terrain-based matching for rough alignment, followed by a bird's-eye view adjustment for fine registration. Point clouds collected throughout nine sessions across the growing season were successfully registered both spatially and temporally, with average registration errors of approximately 3 cm. We used the generated 4D models to monitor canopy height (CH) and volume (CV) for eleven cotton genotypes over two months. The consistent height reference established via our spatiotemporal registration process enabled precise estimations of CH (R 2 = 0.95, RMSE = 7.6 cm). Additionally, we analyzed the relationship between CV and the interception of photosynthetically active radiation (IPAR f ), finding that it followed a curve with exponential saturation, consistent with theoretical models, with a standard error of regression (SER) of 11%. In addition, we compared mathematical models from the Richards family of sigmoid curves for crop growth modeling, finding that the logistic model effectively captured CH and CV evolution, aiding in identifying significant genotype differences. Our novel TLS-based digital phenotyping methodology enhances precision and efficiency in field phenotyping over time, advancing plant phenomics and empowering efficient decision-making for crop improvement efforts.

11.
Psychiatry Res ; 340: 116105, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39151277

RESUMEN

Clinical trials in depression lack objective measures. Speech latencies are an objective measure of psychomotor slowing with face validity and empirical support. 'Turn latency' is the response time between speakers. Retrospective analysis was carried-out on the utility of turn latencies as an enrichment tool in a clinical trial of bipolar I depression. Speech data was obtained from 274 participants during 1,352 Montgomery-Åsberg Depression Rating Scale (MADRS) recordings in a randomized, placebo controlled, 6-week clinical trial of SEP-4199 (200 mg or 400 mg). Post-randomization turn latencies were compared between patients with moderate to severe depression and patients whose depression had remitted. A cutoff was determined and applied to turn latencies pre-randomization to classify individuals into two groups: Speech Latencies Slow (SL-Slow) and Speech Latencies Normal (SL-Normal). At week 6, SL-Slow (N = 172) showed significant separation in MADRS scores between placebo and treatment arms. SL-Normal (N = 102) showed larger MADRS improvements and no significant separation between placebo and treatment arms. Excluding SL-Normal increased primary outcome effect size by 52 % and 100 % for the treatment arms. Turn latencies are an objective measure available from standard clinical assessments and may assess the severity of symptoms more accurately and screen out placebo responders.

12.
Int J Med Inform ; 191: 105602, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39153282

RESUMEN

OBJECTIVE: Norwegian health registries covering entire population are used for administration, research, and emergency preparedness. We harmonized these data onto the Observational Medical Outcomes Partnership common data model (OMOP CDM) and enrich real-world data in OMOP format with COVID-19 related data. METHODS: Data from six registries (2018-2021) covering birth registrations, selected primary and secondary care events, vaccinations, and communicable disease notifications were mapped onto the OMOP CDM v5.3. An Extract-Transform-Load (ETL) pipeline was developed on simulated data using data characterization documents and scanning tools. We ran dashboard quality checks, cohort generations, investigated differences between source and mapped data, and refined the ETL accordingly. RESULTS: We mapped 1.5 billion rows of data of 5,673,845 individuals. Among these, there were 804,277 pregnancies, 483,585 mothers together with 792,477 children, and 472,948 fathers. We identified 382,516 positive tests for COVID-19 in 380,794 patients. These figures are consistent with results from source data. In addition to 11 million source codes mapped automatically, we mapped 237 non-standard codes to standard concepts and introduced 38 custom concepts to accommodate pregnancy-related terminologies that were not supported by OMOP CDM vocabularies. A total of 3,700/3,705 (99.8%) checks passed. The 5 failed checks could be explained by the nature of the data and only represent a small number of records. DISCUSSION AND CONCLUSION: Norwegian registry data were successfully harmonized onto OMOP CDM with high level of concordance and provides valuable source for federated COVID-19 related research. Our mapping experience is highly valuable for data partners with Nordic health registries.

13.
Comput Biol Med ; 180: 109019, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153393

RESUMEN

Recent clinical studies have reported that heart failure with preserved ejection fraction (HFpEF) can be divided into two phenotypes based on the range of ejection fraction (EF), namely HFpEF with higher EF and HFpEF with lower EF. These phenotypes exhibit distinct left ventricle (LV) remodelling patterns and dynamics. However, the influence of LV remodelling on various LV functional indices and the underlying mechanics for these two phenotypes are not well understood. To address these issues, this study employs a coupled finite element analysis (FEA) framework to analyse the impact of various ventricular remodelling patterns, specifically concentric remodelling (CR), concentric hypertrophy (CH), and eccentric hypertrophy (EH), with and without LV wall thickening on LV functional indices. Further, the geometries with a moderate level of remodelling from each pattern are subjected to fibre stiffening and contractile impairment to examine their effect in replicating the different features of HFpEF. The results show that with severe CR, LV could exhibit the characteristics of HFpEF with higher EF, as observed in recent clinical studies. Controlled fibre stiffening can simultaneously increase the end-diastolic pressure (EDP) and reduce the peak longitudinal strain (ell) without significant reduction in EF, facilitating the moderate CR geometries to fit into this phenotype. Similarly, fibre stiffening can assist the CH and 'EH with wall thickening' cases to replicate HFpEF with lower EF. These findings suggest that potential treatment for these two phenotypes should target the bio-origins of their distinct ventricular remodelling patterns and the extent of myocardial stiffening.

14.
Adv Sci (Weinh) ; : e2400918, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136147

RESUMEN

Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations.

15.
Psychiatry Res ; 340: 116109, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39106814

RESUMEN

Speech and language differences have long been described as important characteristics of autism spectrum disorder (ASD). Linguistic abnormalities range from prosodic differences in pitch, intensity, and rate of speech, to language idiosyncrasies and difficulties with pragmatics and reciprocal conversation. Heterogeneity of findings and a reliance on qualitative, subjective ratings, however, limit a full understanding of linguistic phenotypes in autism. This review summarizes evidence of both speech and language differences in ASD. We also describe recent advances in linguistic research, aided by automated methods and software like natural language processing (NLP) and speech analytic software. Such approaches allow for objective, quantitative measurement of speech and language patterns that may be more tractable and unbiased. Future research integrating both speech and language features and capturing "natural language" samples may yield a more comprehensive understanding of language differences in autism, offering potential implications for diagnosis, intervention, and research.

16.
Front Plant Sci ; 15: 1346046, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086916

RESUMEN

Micronutrient deficiencies (MNDs) particularly zinc (Zn) and iron (Fe) remain widespread in sub-Saharan Africa (SSA) due to low dietary intake. Wheat is an important source of energy globally, although cultivated wheat is inherently low in grain micronutrient concentrations. Malawian wheat/Am. muticum and Malawian wheat/T. urartu BC1F3 introgression lines, developed by crossing three Malawian wheat varieties (Kenya nyati, Nduna and Kadzibonga) with DH-348 (wheat/Am. muticum) and DH-254 (wheat/T. urartu), were phenotyped for grain Zn and Fe, and associated agronomic traits in Zn-deficient soils, in Malawi. 98% (47) of the BC1F3 introgression lines showed higher Zn above the checks Paragon, Chinese Spring, Kadzibonga, Kenya Nyati and Nduna. 23% (11) of the introgression lines showed a combination of high yields and an increase in grain Zn by 16-30 mg kg -1 above Nduna and Kadzibonga, and 11-25 mg kg -1 above Kenya nyati, Paragon and Chinese Spring. Among the 23%, 64% (7) also showed 8-12 mg kg -1 improvement in grain Fe compared to Nduna and Kenya nyati. Grain Zn concentrations showed a significant positive correlation with grain Fe, whilst grain Zn and Fe negatively and significantly correlated with TKW and grain yield. This work will contribute to the efforts of increasing mineral nutrient density in wheat, specifically targeting countries in the SSA.

17.
Clin Lab Med ; 44(3): 511-526, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089755

RESUMEN

Clinical assessment of platelet activation by flow cytometry is useful in the characterization and diagnosis of platelet-specific disorders and as a measure of risk for thrombosis or bleeding. Platelets circulate in a resting, "unactivated" state, but when activated they undergo alterations in surface glycoprotein function and/or expression level, exposure of granule membrane proteins, and exposure of procoagulant phospholipids. Flow cytometry provides the means to detect these changes and, unlike other platelet tests, is appropriate for measuring platelet function in samples from patients with low platelet counts. The present review will focus on flow cytometric tests for platelet activation markers.


Asunto(s)
Plaquetas , Citometría de Flujo , Activación Plaquetaria , Humanos , Pruebas de Función Plaquetaria , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Trastornos de las Plaquetas Sanguíneas/sangre , Biomarcadores/sangre
18.
Pharmacoepidemiol Drug Saf ; 33(8): e5875, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39090800

RESUMEN

PURPOSE: Bleeding is an important health outcome of interest in epidemiological studies. We aimed to develop and validate rule-based algorithms to identify (1) major bleeding and (2) all clinically relevant bleeding (CRB) (composite of major and all clinically relevant nonmajor bleeding) within real-world electronic healthcare data. METHODS: We took a random sample (n = 1630) of inpatient admissions to Singapore public healthcare institutions in 2019 and 2020, stratifying by hospital and year. We included patients of all age groups, sex, and ethnicities. Presence of major bleeding and CRB were ascertained by two annotators through chart review. A total of 630 and 1000 records were used for algorithm development and validation, respectively. We formulated two algorithms: sensitivity- and positive predictive value (PPV)-optimized algorithms. A combination of hemoglobin test patterns and diagnosis codes were used in the final algorithms. RESULTS: During validation, diagnosis codes alone yielded low sensitivities for major bleeding (0.16) and CRB (0.24), although specificities and PPV were high (>0.97). For major bleeding, the sensitivity-optimized algorithm had much higher sensitivity and negative predictive values (NPVs) (sensitivity = 0.94, NPV = 1.00), however false positive rates were also relatively high (specificity = 0.90, PPV = 0.34). PPV-optimized algorithm had improved specificity and PPV (specificity = 0.96, PPV = 0.52), with little reduction in sensitivity and NPV (sensitivity = 0.88, NPV = 0.99). For CRB events, our algorithms had lower sensitivities (0.50-0.56). CONCLUSIONS: The use of diagnosis codes alone misses many genuine major bleeding events. We have developed major bleeding algorithms with high sensitivities, which can ascertain events within populations of interest.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Hemorragia , Humanos , Registros Electrónicos de Salud/estadística & datos numéricos , Hemorragia/diagnóstico , Hemorragia/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Singapur/epidemiología , Anciano , Adulto , Fenotipo , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad , Adulto Joven , Anciano de 80 o más Años , Adolescente
19.
Behav Res Methods ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112740

RESUMEN

Passive smartphone measures hold significant potential and are increasingly employed in psychological and biomedical research to capture an individual's behavior. These measures involve the near-continuous and unobtrusive collection of data from smartphones without requiring active input from participants. For example, GPS sensors are used to determine the (social) context of a person, and accelerometers to measure movement. However, utilizing passive smartphone measures presents methodological challenges during data collection and analysis. Researchers must make multiple decisions when working with such measures, which can result in different conclusions. Unfortunately, the transparency of these decision-making processes is often lacking. The implementation of open science practices is only beginning to emerge in digital phenotyping studies and varies widely across studies. Well-intentioned researchers may fail to report on some decisions due to the variety of choices that must be made. To address this issue and enhance reproducibility in digital phenotyping studies, we propose the adoption of preregistration as a way forward. Although there have been some attempts to preregister digital phenotyping studies, a template for registering such studies is currently missing. This could be problematic due to the high level of complexity that requires a well-structured template. Therefore, our objective was to develop a preregistration template that is easy to use and understandable for researchers. Additionally, we explain this template and provide resources to assist researchers in making informed decisions regarding data collection, cleaning, and analysis. Overall, we aim to make researchers' choices explicit, enhance transparency, and elevate the standards for studies utilizing passive smartphone measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA