RESUMEN
The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is an invasive pest of sugarcane, Saccharum spp., rice, Oryza sativa L., and other graminaceous crops in the United States. Traps baited with the synthetic female sex pheromone of E. loftini are used for monitoring and management of this invasive pest. However, the active space, or radius of attraction, of these traps is not known. Two field experiments examined the effect of intertrap distance on trap captures with hexagonal arrays of traps deployed in rice stubble habitat in Texas (2011) and Louisiana (2013). Trap capture increased with increasing intertrap distance. Trap interference occurred at intertrap distances ≤50 m in the 2011 experiment. Results from the experiment conducted in 2013 indicate that trap interference occurs at intertrap distances of 50 m, but not at distances ≥100 m. These results suggest that under field conditions, E. loftini pheromone traps attract males from distances of 50-100 m. The active space of pheromone traps also was examined under controlled wind conditions by direct observation of male response to detection of the female sex pheromone. Eoreuma loftini males responded to the pheromone blend by becoming active, fanning their wings, and rapidly walking in circles. The mean distance from the pheromone source at which males responded was 47.6 m. This work provides the first documentation of active space for traps baited with female sex pheromone for a crambid species, and these data will improve pheromone trap deployment strategies for E. loftini monitoring and management.