Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.206
Filtrar
1.
Chem Phys Lipids ; 264: 105422, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097133

RESUMEN

Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.

2.
Front Immunol ; 15: 1416669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131160

RESUMEN

Background: Production of anti-phosphatidylserine (anti-PS) antibodies has been associated with malaria and can aggravate pathology. How these autoantibodies develop during early childhood in a malaria context is not known. We examined levels of anti-PS IgG and IgM antibodies in a longitudinal cohort of mother-baby pairs during birth, in the infants at 2.5, 6 months, and in mothers and their babies at 9 months postpartum. Results: There was no difference between levels of anti-PS IgG in cord blood and the mothers' peripheral blood at birth. However, anti-PS IgM levels were significantly higher in the mothers compared to the infants' cord blood, and IgM levels were steadily increasing during the first 9 months of the infants' life. In infants that had the highest anti-PS IgM levels at birth, there was a decline until 6 months with a rise at 9 months. Infants that possessed high anti-PS IgG at birth also exhibited a progressive decline in levels. When anti-PS were correlated to different fractions of B-cells, there were several correlations with P. falciparum specific atypical B cells both at birth and at 2.5 months for the infants, especially for anti-PS IgM. Anti-PS also correlated strongly to C1q-fixing antibodies at birth. Conclusion: These results show that anti-PS IgG acquired by mothers could be transferred transplacentally and that IgM antibodies targeting PS are acquired during the first year of life. These results have increased the knowledge about autoimmune responses associated with infections in early life and is critical for a comprehensive understanding of malaria vaccine functionality in endemic areas.


Asunto(s)
Inmunoglobulina G , Inmunoglobulina M , Fosfatidilserinas , Humanos , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Femenino , Fosfatidilserinas/inmunología , Lactante , Uganda , Recién Nacido , Adulto , Plasmodium falciparum/inmunología , Masculino , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Inmunidad Materno-Adquirida , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Madres , Sangre Fetal/inmunología , Linfocitos B/inmunología , Estudios Longitudinales
3.
Int Immunopharmacol ; 140: 112895, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39133957

RESUMEN

OBJECTIVE: This study explores the therapeutic effects and mechanisms of DHA-enriched phosphatidylserine (DHA-PS) on liver injury induced by cyclophosphamide (CTX) in mice, focusing on the gut-liver axis. METHODS: A mouse model was established by administering CTX (80 mg/kg) intraperitoneally for 5 days. DHA-PS (50 or 100 mg/kg) was administered for the next 7 days to assess its reparative impact on liver damage. RESULTS: The findings revealed significant improvements in liver biochemical indices, inflammatory markers, and oxidative stress levels in the mice treated with DHA-PS. Through non-targeted metabolomics analysis, DHA-PS mitigated CTX-induced metabolic disruptions by modulating lipid, amino acid, and pyrimidine metabolism. Immunofluorescence analysis further confirmed that DHA-PS reduced the expression of liver-associated inflammatory proteins by inhibiting the TLR4/NF-κB pathway. Additionally, DHA-PS restored the intestinal barrier, evidenced by adjustments in the levels of intestinal lipopolysaccharide (LPS), secretory immunoglobulin A (sIgA), and tight junction proteins (Claudin-1, Occludin, and ZO-1). It also improved gut microbiota balance by enhancing microbial diversity, increasing beneficial bacteria, and altering community structures. CONCLUSION: These results suggest that DHA-PS could be a potential therapeutic agent or functional food for CTX-induced liver injury through its regulation of the gut-liver axis.

4.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39131348

RESUMEN

T-cell Immunoglobulin and Mucin (TIM)-family proteins facilitate the clearance of apoptotic cells, are involved in immune regulation, and promote infection of enveloped viruses. These processes are frequently studied in experimental animals such as mice or rhesus macaques, but functional differences among the TIM orthologs from these species have not been described. Previously, we reported that while all three human TIM proteins bind phosphatidylserine (PS), only human TIM1 (hTIM1) binds phosphatidylethanolamine (PE), and that this PE-binding ability contributes to both phagocytic clearance of apoptotic cells and virus infection. Here we show that rhesus macaque TIM1 (rhTIM1) and mouse TIM1 (mTIM1) bind PS but not PE and that their inability to bind PE makes them less efficient than hTIM1. We also show that alteration of only two residues of mTIM1 or rhTIM1 enables them to bind both PE and PS, and that these PE-binding variants are more efficient at phagocytosis and mediating viral entry. Further, we demonstrate that the mucin domain also contributes to the binding of the virions and apoptotic cells, although it does not directly bind phospholipid. Interestingly, contribution of the hTIM1 mucin domain is more pronounced in the presence of a PE-binding head domain. These results demonstrate that rhTIM1 and mTIM1 are inherently less functional than hTIM1, owing to their inability to bind PE and their less functional mucin domains. They also imply that mouse and macaque models underestimate the activity of hTIM1.

5.
Adv Sci (Weinh) ; : e2400064, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981007

RESUMEN

Microglia play a crucial role in synaptic elimination by engulfing dystrophic neurons via triggering receptors expressed on myeloid cells 2 (TREM2). They are also involved in the clearance of beta-amyloid (Aß) plaques in Alzheimer's disease (AD); nonetheless, the driving force behind TREM2-mediated phagocytosis of beta-amyloid (Aß) plaques remains unknown. Here, using advanced 2D/3D/4D co-culture systems with loss-of-function mutations in TREM2 (a frameshift mutation engineered in exon 2) brain organoids/microglia/assembloids, it is identified that the clearance of Aß via TREM2 is accelerated by externalized phosphatidylserine (ePtdSer) generated from dystrophic neurons surrounding the Aß plaques. Moreover, it is investigated whether microglia from both sporadic (CRISPR-Cas9-based APOE4 lines) and familial (APPNL-G-F/MAPT double knock-in mice) AD models show reduced levels of TREM2 and lack of phagocytic activity toward ePtdSer-positive Aß plaques. Herein new insight is provided into TREM2-dependent microglial phagocytosis of Aß plaques in the context of the presence of ePtdSer during AD progression.

6.
Prostaglandins Leukot Essent Fatty Acids ; 202: 102629, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39002196

RESUMEN

Long-chain polyunsaturated fatty acids (LCPUFAs) are essential for both fetal and placental development. We characterized the FA composition and gene expression levels of FA-metabolizing enzymes in rabbit placentas. Total FA compositions from term rabbit placentas (n = 7), livers, and plasma (both n = 4) were examined: among LCPUFAs with more than three double bonds, dihomo-γ-linolenic acid (DGLA) was the most abundant (11.4 ± 0.69 %, mean ± SE), while arachidonic acid was the second-most rich component (6.90 ± 0.56 %). DGLA was barely detectable (<1 %) in livers and plasma from term rabbits, which was significantly lower than in placentas (both p < 0.0001). Compared with the liver, transcript levels of the LCPUFA-metabolizing enzymes FADS2 and ELOVL5 were 7- and 4.5-fold higher in placentas (both p < 0.05), but levels of FADS1 and ELOVL2 were significantly lower (both p < 0.01). Our results suggest a placenta-specific enzyme expression pattern and LCPUFA profile in term rabbits, which may support a healthy pregnancy.

7.
Res Pract Thromb Haemost ; 8(4): 102472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39036672

RESUMEN

Background: Five secreted platelet protein disulfide isomerases (PDIs) and 1 transmembrane PDI regulate platelet function and thrombosis. Thioredoxin-related transmembrane protein 1 (TMX1) was the first member of the PDI family found to negatively regulate platelet aggregation and platelet accumulation in vivo. The effect of TMX1 on coagulation is unknown. Objectives: To determine the effect of TMX1 on coagulation. Methods: TMX1-/- mice were used to study platelet accumulation and fibrin deposition in vivo in the laser-induced thrombosis injury model. Annexin V deposition at the site of vascular injury was studied using conditional TMX1 knockout mice. Annexin V binding to platelets was studied using human platelets, anti-TMX1 antibodies, and TMX1-deficient platelets. Results: TMX1-/- mice had increased fibrin deposition that was reversed with infusion of recombinant TMX1. Infusion of recombinant TMX1 inhibited platelet accumulation and fibrin deposition in wild-type mice and inhibited fibrin deposition in ß3-null mice. Platelet accumulation is absent in ß3-null mice, suggesting that TMX1 inhibits coagulation independently of platelets. Annexin V binding was increased in activated human platelets incubated with an anti-TMX1 antibody and mouse platelets lacking TMX1. Addition of recombinant TMX1 decreased annexin V binding to platelets. Annexin V binding was increased at the site of vascular injury in Tie2-Cre/TMX1fl/fl mice deficient in endothelial cell TMX1. Conclusion: TMX1 decreases coagulation at the site of vascular injury and negatively regulates phosphatidylserine exposure on endothelial cells and platelets.

8.
J Virol ; : e0077524, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007616

RESUMEN

T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM-1 has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production. IMPORTANCE: Chikungunya virus (CHIKV) is an enveloped alphavirus transmitted by the bites of infectious mosquitoes. Infection with CHIKV results in the development of fever, joint pain, and arthralgia that can become chronic and last for months after infection. Prevention of this disease is still highly focused on vector control strategies. In December 2023, a new live attenuated vaccine against CHIKV was approved by the FDA. We aimed to study the cellular factors involved in CHIKV release, to better understand CHIKV's ability to efficiently infect and spread among a wide variety of cell lines. We found that TIM-1 receptors can significantly abrogate CHIKV's ability to efficiently exit infected cells. This information can be beneficial for maximizing viral particle production in laboratory settings and during vaccine manufacturing.

9.
Biomed Pharmacother ; 178: 117200, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39053420

RESUMEN

Aged adults are prone to both short- and long-term complications following sepsis due to ineffective therapy. Phosphatidylserine (PS) is a membrane nutrient supplement known to enhance cognition and brain function, but its potential effects in treating sepsis are not well-documented. Our study aimed to explore the potential of PS in improving outcomes in sepsis and sepsis-associated encephalopathy (SAE). Middle-aged mice were administered PS for two months following induction of sepsis by lipopolysaccharides. The results indicated a significant increase in the survival rate of mice treated with PS after sepsis. Surviving mice underwent open field and shuttle box tests 45 days post-sepsis, revealing potential alleviation of neurobehavioral impairments due to PS pretreatment. Analysis at 60 days post-sepsis euthanasia showed reduced cleaved-caspase 3 in neurons and glial cell markers in the PS-treated group compared to the untreated sepsis group. Furthermore, PS administration effectively reduced proinflammatory cytokine gene expression in the hippocampus of mice with SAE, potentially inhibiting the TBK1/NLRP3/ASC signaling pathway. In the gut, PS pretreatment modulated ß-diversity while maintaining jejunal morphology and colon ZO-1 expression, without significantly affecting α-diversity indices. Our findings suggest that PS administration improves survival rates, modulates the gut microbiome, preserves gut integrity, and ameliorates brain pathology in survived mice after sepsis. Importantly, these findings have significant implications for sepsis treatment and cognitive function preservation in aging individuals, providing new insights and sparking further interest and investigation into the potential of PS in sepsis treatment.

10.
J Agric Food Chem ; 72(31): 17405-17416, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042819

RESUMEN

Botrytis cinerea is an important fungal pathogen that causes gray mold disease in plants. Previously, Bacillus velezensis TCS001 live culture presented broad-spectrum antifungal activity against various plant pathogenic fungi and oomycetes, particularly B. cinerea. Here, the bioactivity of lipopeptides produced by TCS001 against B. cinerea was investigated. The IC50 values of the crude lipopeptide extract (CLE) from TCS001 to suppress mycelial growth and conidial germination were 14.20 and 49.39 mg/L, respectively. SEM and TEM imaging revealed that CLE caused morphological deformities and ultrastructural changes in the mycelium. Transcriptomic analyses combined with ΔBcpsd mutant construction demonstrated that the CLE could confer antifungal activity via suppressing Bcpsd expression in the pathogen. In addition, the CLE activated the plant immune system by increasing the content of defense-related enzymes and the expression of marker genes in immunity signaling pathways in cucumber plants. Therefore, TCS001 CLE could be potentially developed into biopesticides for the biocontrol of gray mold disease.


Asunto(s)
Bacillus , Botrytis , Cucumis sativus , Lipopéptidos , Enfermedades de las Plantas , Botrytis/efectos de los fármacos , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Enfermedades de las Plantas/microbiología , Cucumis sativus/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Perfilación de la Expresión Génica , Esporas Fúngicas/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Transcriptoma , Micelio/efectos de los fármacos , Micelio/química , Micelio/crecimiento & desarrollo
11.
Am J Reprod Immunol ; 92(1): e13890, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958240

RESUMEN

BACKGROUND: The objective of this study was to investigate the clinical relevance of anti-prothrombin antibodies (aPT) and anti-phosphatidylserine/prothrombin antibodies (aPS/PT) in relation to pregnancy outcomes and coagulation parameters, as well as immune markers. METHODS: We retrospectively analyzed 477 pregnant women with experienced at least one spontaneous miscarriage who were tested for aPT and aPS/PT antibodies, and compared their clinical characteristics, coagulation indicators, immune biomarkers, and pregnancy outcomes to assess the diagnostic accuracy of these antibodies. RESULTS: We found that the aPT IgG and the aPS/PT IgM were independently associated with increased risk of pregnancy loss, with odds ratios (ORs) of 1.055 (95% confidence interval [CI]: 1.009-1.103, p = 0.017) and 1.041 (95% CI: 1.015-1.067, p = 0.002), respectively. Moreover, we found that the aPS/PT IgM had a higher diagnostic performance than the aPT IgG, as indicated by the AUC of 0.663 and 0.593, respectively. The pregnancy loss rate was positively correlated with the level of aPS/PT IgM, while the aPT IgG is not. We also found that in the pregnancy loss group, aPT IgG showed negative correlations with prothrombin time (PT); aPS/PT IgM showed positive correlations with aPS/PT IgG. However, none of aPT IgG, aPT IgM, aPS/PT IgM, or aPS/PT IgG was related to other adverse pregnancy outcomes, such as preterm delivery, fetal growth restriction (FGR), or preeclampsia (PE). CONCLUSION: Our findings suggest that aPT IgG and aPS/PT IgM are independent risk factors for pregnancy loss, especially aPS/PT IgM, which has a positive linear correlation with pregnancy loss.


Asunto(s)
Aborto Espontáneo , Fosfatidilserinas , Resultado del Embarazo , Protrombina , Humanos , Femenino , Embarazo , Fosfatidilserinas/inmunología , Adulto , Estudios Retrospectivos , Protrombina/inmunología , Aborto Espontáneo/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Biomarcadores/sangre , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología
13.
ACS Chem Neurosci ; 15(15): 2884-2896, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39013013

RESUMEN

Copper homeostasis is critical to the functioning of the brain, and its breakdown is linked with many brain diseases. Copper is also known to interact with the negatively charged lipid, phosphatidylserine (PS), as well as α-synuclein, an aggregation-prone protein enriched in the synapse, which plays a role in synaptic vesicle docking and fusion. However, the interplay between copper, PS lipid, and α-synuclein is not known. Herein, we report a detailed and predominantly kinetic study of the interactions among these three components pertinent to copper homeostasis and neurotransmission. We found that synaptic vesicle-mimicking small unilamellar vesicles (SUVs) can sequester any excess free Cu2+ within milliseconds, and bound Cu2+ on SUVs can be reduced to Cu+ by GSH at a nearly constant rate under physiological conditions. Moreover, we revealed that SUV-bound Cu2+ does not affect the binding between wild-type α-synuclein and SUVs but affect that between N-terminal acetylated α-synuclein and SUVs. In contrast, Cu2+ can effectively displace both types of α-synuclein from the vesicles. Our results suggest that synaptic vesicles may mediate copper transfer in the brain, while copper could participate in synaptic vesicle docking to the plasma membrane via its regulation of the interaction between α-synuclein and synaptic vesicle.


Asunto(s)
Cobre , Homeostasis , Fosfatidilserinas , Vesículas Sinápticas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Fosfatidilserinas/metabolismo , Vesículas Sinápticas/metabolismo , Cobre/metabolismo , Homeostasis/fisiología , Humanos , Transmisión Sináptica/fisiología , Animales
14.
Antioxidants (Basel) ; 13(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38929083

RESUMEN

This study was conducted to investigate the effects of dietary phosphatidylserine (PS) supplementation on the growth performance, stress response, non-specific immunity and antioxidant capacity of juvenile blunt snout bream (Megalobrama ambylcephala) cultured under a high stocking density. A 2 × 2 two-factorial design was adopted, including two stocking densities (10 and 20 fish/m3) and two dietary PS levels (0 and 50 mg/kg). After the 12-week feeding trial, the high stocking density significantly decreased the final weight; weight gain rate; specific growth rate; feed intake; nitrogen retention efficiency; plasma complement 3 (C3) level; albumin/globulin (ALB/GLB, A/G) ratio; activity of myeloperoxidase, lysozyme (LZM) and glutathione peroxidase (GPX); gpx transcription; and abundance of sirtuin3 (Sirt3) and nuclear factor erythroid-2-related factor 2 (Nrf2). However, it significantly increased the plasma levels of cortisol, glucose (GLU), lactic acid (LD), total protein and GLB; hepatic malondialdehyde (MDA) content; and sirt1 transcription. PS supplementation significantly increased the plasma ALB and C4 levels; the A/G ratio; the activity of LZM, CAT and GPX; the transcription of sirt1, nrf2, manganese-containing superoxide dismutase and catalase; and the Nrf2 abundance. However, it significantly decreased the plasma levels of cortisol, GLU and GLB, as well as the hepatic MDA content. In addition, there was a significant interaction between the stocking density and PS supplementation regarding the effects on the plasma LD, ALB, GLB and C3 levels; A/G ratio; hepatic CAT activity; and protein abundance of Sod2. In conclusion, PS supplementation can counteract the high stocking density-induced stress response, redox imbalance and immunosuppression in blunt snout bream.

15.
J Sci Food Agric ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843481

RESUMEN

BACKGROUND: Lack of n-3 polyunsaturated fatty acids during the period of maternity drastically lowers the docosahexaenoic acid (DHA) level in the brain of offspring and studies have demonstrated that different molecular forms of DHA are beneficial to brain development. The aim of this study was to investigate the effect of short-term supplementation with DHA-enriched phosphatidylserine (PS) and phosphatidylcholine (PC) on DHA levels in the liver and brain of congenital n-3-deficient mice. RESULTS: Dietary supplementation with DHA significantly changed the fatty acid composition of various phospholipid molecules in the cerebral cortex and liver while DHA-enriched phospholipid was more effective than DHA triglyceride (TG) in increasing brain and liver DHA. Both DHA-PS and DHA-PC could effectively increase the DHA levels, but DHA in the PS form was superior to PC in the contribution of DHA content in the brain ether-linked PC (ePC) and liver lyso-phosphatidylcholine molecular species. DHA-PC showed more significant effects on the increase of DHA in liver TG, PC, ePC, phosphatidylethanolamine (PE) and PE plasmalogen (pPE) molecular species and decreasing the arachidonic acid level in liver PC plasmalogen, ePC, PE and pPE molecular species compared with DHA-PS. CONCLUSION: The effect of dietary interventions with different molecular forms of DHA for brain and liver lipid profiles is different, which may provide theoretical guidance for dietary supplementation of DHA for people. © 2024 Society of Chemical Industry.

16.
Heliyon ; 10(11): e32056, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882340

RESUMEN

Washed red blood cells (RBCs) can be used to treat immune-related diseases. However, whether the washing process changes the quality of RBCs and affects the curative effect of transfusion therapy remains unclear. We retrospectively analysed the clinical data of patients who received blood transfusion. The physiological and biochemical parameters of RBCs were tested on an automated haematology-biochemical analyser. CD47 and phosphatidylserine (PS) plasma membrane expression were analysed using flow cytometry. Morphological changes in RBCs were observed using scanning electron microscopy. The results showed that the curative effect on patients who received washed RBCs was weaker than that on those who received non-washed RBCs. Physiological and biochemical parameters of RBCs were not significantly different. RBC immune indices changed significantly after washing. The expression of "don't eat me" signals was weakened, whereas the intensity of "eat me" signals was enhanced. This study suggests that the current use of physiological and biochemical parameters as indicators to evaluate the quality of RBCs may not be comprehensive and that evaluation of the real status of RBCs requires other effective parameters. Immune molecules in RBCs are expected to become supplementary markers for evaluating RBC quality.

17.
Proc Natl Acad Sci U S A ; 121(27): e2311831121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38941274

RESUMEN

TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.


Asunto(s)
Anoctaminas , Neuronas , Fosfatidilserinas , Tauopatías , Proteínas tau , Animales , Anoctaminas/metabolismo , Anoctaminas/genética , Fosfatidilserinas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas tau/metabolismo , Proteínas tau/genética , Ratones , Tauopatías/metabolismo , Tauopatías/patología , Humanos , Microglía/metabolismo , Microglía/patología , Fosforilación , Ratones Transgénicos , Modelos Animales de Enfermedad , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Encéfalo/metabolismo , Encéfalo/patología , Ratones Noqueados
18.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38853864

RESUMEN

KRAS is frequently mutated in cancer, contributing to 20% of all human cancer especially pancreatic, colorectal and lung cancer. Signaling of the constitutively active KRAS oncogenic mutants is mostly compartmentalized to proteolipid nanoclusters on the plasma membrane (PM). Signaling nanoclusters of many KRAS mutants selectively enrich phosphatidylserine (PS) lipids with unsaturated sn-2 acyl chains, but not the fully saturated PS species. Thus, remodeling PS acyl chains may suppress KRAS oncogenesis. Lysophosphatidylcholine acyltransferases (LPCATs) remodel sn-2 acyl chains of phospholipids, with LPCAT1 preferentially generating the fully saturated lipids. Here, we show that stable expression of LPCAT1 depletes major PS species with unsaturated sn-2 chains while decreasing minor phosphatidylcholine (PC) species with the corresponding acyl chains. LPCAT1 expression more effectively disrupts the nanoclustering of oncogenic GFP-KRASG12V, which is restored by acute addback of exogenous unsaturated PS. LPCAT1 expression compromises signaling and oncogenic activities of the KRAS-dependent pancreatic tumor lines. LPCAT1 expression sensitizes human pancreatic tumor MiaPaCa-2 cells to KRASG12C specific inhibitor, Sotorasib. Statistical analyses of patient data further reveal that pancreatic cancer patients with KRAS mutations express less LPCAT1. Higher LPCAT1 expression also improves survival probability of pancreatic and lung adenocarcinoma patients with KRAS mutations. Thus, PS acyl chain remodeling selectively suppresses KRAS oncogenesis.

19.
J Bioenerg Biomembr ; 56(4): 461-473, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833041

RESUMEN

Miltefosine (MLT) is a broad-spectrum drug included in the alkylphospholipids (APL) used against leishmania and various types of cancer. The most crucial feature of APLs is that they are thought to only kill cancerous cells without harming normal cells. However, the molecular mechanism of action of APLs is not completely understood. The increase in the phosphatidylserine (PS) ratio is a marker showing the stage of cancer and even metastasis. The goal of this research was to investigate the molecular effects of miltefosine at the molecular level in different PS ratios. The effects of MLT on membrane phase transition, membrane orders, and dynamics were studied using DPPC/DPPS (3:1) and DPPC/DPPS (1:1) multilayer (MLV) vesicles mimicking DPPS ratio variation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Our findings indicate that miltefosine is evidence at the molecular level that it is directed towards the tumor cell and that the drug's effect increases with the increase of anionic lipids in the membrane depending on the stage of cancer.


Asunto(s)
Fosfatidilserinas , Fosforilcolina , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosfatidilserinas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Membrana Celular/metabolismo , Antineoplásicos/farmacología
20.
Protein Sci ; 33(7): e5078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895991

RESUMEN

Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid ß peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid ß peptide and modify the toxicity of amyloid ß aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.


Asunto(s)
Fosfatidilserinas , Tubulina (Proteína) , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/toxicidad , Humanos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Unión Proteica , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Agregado de Proteínas , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA