Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.059
Filtrar
1.
Gut Microbes ; 16(1): 2409924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39369445

RESUMEN

Helicobacter pylori, a dominant member of the gastric microbiota was associated with various gastrointestinal diseases and presents a significant challenge due to increasing antibiotic resistance. This study identifies H. pylori's phospholipase A (PldA) as a critical factor in modulating host macrophage responses, facilitating H. pylori 's evasion of the immune system and persistence. PldA alters membrane lipids through reversible acylation and deacylation, affecting their structure and function. We found that PldA incorporates lysophosphatidylethanolamine into macrophage membranes, disrupting their bilayer structure and impairing TNFR1-mediated p38-MK2 signaling. This disruption results in reduced macrophage autophagy and elevated RIP1-dependent apoptosis, thereby enhancing H. pylori survival, a mechanism also observed in multidrug-resistant strains. Pharmacological inhibition of PldA significantly decreases H. pylori viability and increases macrophage survival. In vivo studies corroborate PldA's essential role in H. pylori persistence and immune cell recruitment. Our findings position PldA as a pivotal element in H. pylori pathogenesis through TNFR1-mediated membrane modulation, offering a promising therapeutic target to counteract bacterial resistance.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Macrófagos , Receptores Tipo I de Factores de Necrosis Tumoral , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Animales , Ratones , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sistema de Señalización de MAP Quinasas , Apoptosis
2.
J Sep Sci ; 47(19): e202400325, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39375897

RESUMEN

The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from Serratia sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from Bacillus thuringiensis were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. Serratia sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.


Asunto(s)
Biocombustibles , Lipasa , Serratia , Aceite de Soja , Lipasa/metabolismo , Lipasa/química , Biocombustibles/análisis , Serratia/enzimología , Serratia/metabolismo , Serratia/química , Aceite de Soja/química , Aceite de Soja/metabolismo , Esterificación , Cromatografía Líquida de Alta Presión , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Fosfolipasas/metabolismo , Fosfolipasas/química , Espectrometría de Masas en Tándem
3.
J Liposome Res ; : 1-12, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363444

RESUMEN

Vesicular nanocarriers like niosomes and liposomes are widely researched for controlled drug delivery systems, with niosomes emerging as promising alternatives due to their higher stability and ease of manufacturing. This study aimed to develop and characterize a niosomal formulation for the encapsulation and sustained release of temozolomide (TMZ), a model lipophilic drug, and to compare the stability of niosomes and liposomes, with a particular focus on the behavior of their lipid bilayers. Niosomes were prepared using the thin-film hydration method, composed of Span 60 (Sorbitan monostearate), cholesterol, and soy lecithin in varying molar ratios. The study investigated critical properties such as drug loading capacity, release kinetics, and resistance to enzymatic degradation. The optimized formulation was analyzed for drug entrapment efficiency and stability against phospholipase A2 (PLA2) degradation. The optimized niosomal formulation, with a 4:2:1 molar ratio of Span 60: cholesterol, achieved a high TMZ entrapment efficiency of 73.23 ± 1.02% and demonstrated sustained drug release over 24 hours. In comparison, liposomes released their TMZ payload within 4 hours upon exposure to PLA2, while the niosomes maintained their release profile, indicating superior stability. Spectroscopic and thermal analysis confirmed successful drug encapsulation with no component incompatibilities.

4.
Mol Cell ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39366376

RESUMEN

The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.

5.
Adv Biol Regul ; : 101054, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39368888

RESUMEN

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.

6.
Lipids Health Dis ; 23(1): 326, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354487

RESUMEN

Metabolic reprogramming, a key mechanism regulating the growth and recurrence of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), still lacks effective clinical strategies for its integration into the precise screening of primary liver cancer. This study utilized ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry to conduct a comprehensive, non-targeted metabolomics analysis, revealing significant upregulation of lipid metabolites such as phosphatidylcholine and lysophosphatidylcholine in patients with HCC and CCA, particularly within the glycerophospholipid metabolic pathway. Hematoxylin and eosin and immunohistochemical staining demonstrated marked upregulation of phospholipase A2 in tumor tissues, further emphasizing the potential of lipid metabolism as a therapeutic target and its important part in the course of cancer. This work provides a new viewpoint for addressing the clinical challenges associated with HCC and CCA, laying the groundwork for the broad application of early diagnosis and personalized treatment strategies, and ultimately aiming to provide tailored and precise therapeutic options for patients.


Asunto(s)
Carcinoma Hepatocelular , Colangiocarcinoma , Glicerofosfolípidos , Metabolismo de los Lípidos , Neoplasias Hepáticas , Humanos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Glicerofosfolípidos/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Metabolómica/métodos , Progresión de la Enfermedad , Fosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/metabolismo , Anciano , Fosfolipasas A2/metabolismo , Reprogramación Metabólica
7.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273463

RESUMEN

Phospholipase A2 (PLA2) is a superfamily of phospholipase enzymes that dock at the water/oil interface of phospholipid assemblies, hydrolyzing the ester bond at the sn-2 position. The enzymatic activity of these enzymes differs based on the nature of the substrate, its supramolecular assemblies (micelle, liposomes), and their composition, reflecting the interfacial nature of the PLA2s and requiring assays able to directly quantify this interaction of the enzyme(s) with these supramolecular assemblies. We developed and optimized a simple, universal assay method employing the pH-sensitive indicator dye bromothymol blue (BTB), in which different POPC (3-palmitoyl-2-oleoyl-sn-glycero-1-phosphocholine) self-assemblies (liposomes or mixed micelles with Triton X-100 at different molar ratios) were used to assess the enzymatic activity. We used this assay to perform a comparative analysis of PLA2 kinetics on these supramolecular assemblies and to determine the kinetic parameters of PLA2 isozymes IB and IIA for each supramolecular POPC assembly. This assay is suitable for assessing the inhibition of PLA2s with great accuracy using UV-VIS spectrophotometry, being thus amenable for screening of PLA2 enzymes and their substrates and inhibitors in conditions very similar to physiologic ones.


Asunto(s)
Fosfatidilcolinas , Fosfolipasas A2 , Fosfolipasas A2/metabolismo , Fosfolipasas A2/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Cinética , Micelas , Liposomas/química , Concentración de Iones de Hidrógeno , Pruebas de Enzimas/métodos , Octoxinol/química
8.
J Stroke Cerebrovasc Dis ; : 108012, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277067

RESUMEN

BACKGROUND: Lipoprotein-associated phospholipase A2 activity (Lp-PLA2-A) is a pivotal enzyme involved in the inflammatory process and atherosclerotic plaque vulnerability. This study aimed to investigate the potential of Lp-PLA2-A as a biomarker for reflecting artery-to-artery embolism (AAE), a critical mechanism with high risk of stroke recurrence in symptomatic intracranial atherosclerotic disease (sICAD). METHODS: The current analysis included a cohort of 1,908 patients with sICAD and baseline levels of Lp-PLA2-A from the Third China National Stroke Registry (CNSR-III). The baseline Lp-PLA2-A levels were quantified centrally using an automatic enzyme assay system. Diagnosis of sICAD was made by experienced stroke neurologists based on the presence of a cerebral infarction within the territory of a stenotic (>50%) or occluded artery, or when clinical symptoms were consistent with the diagnosis. Infarct lesions affecting the cortex serve as imaging biomarkers for stroke mechanism involving AAE.The relationship between baseline Lp-PLA2-A quartile levels and the presence of cortical infarction was analyzed using multivariate logistic regression. RESULTS: Compared to patients in the first Lp-PLA2-A quartile, those in the second, third and fourth quartiles demonstrated a significantly higher proportion of AAE. The proportion of patients with cortical infarction increased with rising Lp-PLA2-A quartiles, observed at 39.3%, 47.1%, 47.4%, and 50.7% for the first, second, third and fourth quartiles respectively (P for trend=0.004). Compared with the first quartile, the odds ratios (ORs) were 1.38 (95% CI = 1.06-1.79) for the second, 1.33 (95% CI = 1.02-1.72) for the third quartile and 1.48 (95% CI = 1.14-1.92) for the fourth quartile. The association between higher Lp-PLA2-A and increased proportion of cortical infarction was also present in the subgroups defined by age <65 years, male, and high-sensitivity C-reactive protein ≥2 mg/L. In sensitivity analyses, the positive correlation between Lp-PLA2-A levels and proportion of cortical infarction remained consistent. CONCLUSIONS: This research highlights the significance of Lp-PLA2-A as a biomarker for reflecting stroke mechanism in sICAD. Additional studies are warranted to explore the potential of targeting Lp-PLA2-associated inflammatory pathways as a pivotal approach in arresting the advancement of intracranial atherosclerotic stenosis and reducing the incidence of embolic strokes.

9.
Aquat Toxicol ; 276: 107090, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39277993

RESUMEN

This study evaluates the impact of environmentally relevant, low-concentration deltamethrin exposure to Eriocheir sinensis ovaries. Our findings revealed that even at a concentration of 0.05 µg/L, deltamethrin exposure can induce significant ovarian toxicity through a 5-day exposure, with gradual amplification detected with time, demonstrating the toxicity amplification effect. Hematoxylin and Eosin staining revealed that low-concentration deltamethrin exposure produces pathological damage consistent with acute toxicity-yolk granules were dissolved and oocyte membranes were ruptured. High-throughput RNA-sequencing data indicated that the acute and low-concentration exposure groups involved completely different pathways and molecular functions, suggesting distinct mechanisms for their toxic effects. Following the identification of phospholipase D (PLD) as a potential core factor regulating the toxicity amplification effect of low concentration deltamethrin, we delved into subsequent mechanism studies using quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay. Through the GnRH signaling pathway, increased PLD indirectly stimulates augmented estradiol secretion, subsequently inducing apoptosis by upregulating Cathepsin D, which can activate the key executioners of apoptosis-caspases (CASP3 and CASP7). In conclusion, low-concentration deltamethrin exposures can induce significant ovarian damage through apoptosis mediated by the upregulation of PLD in the ovaries of Eriocheir sinensis at environmentally relevant concentrations, which lays the preliminary theoretical groundwork for further elucidating the mechanism of toxicity amplification effect of pesticide exposure at low concentrations.

10.
Front Cell Dev Biol ; 12: 1423936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324073

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a worldwide health epidemic with a global occurrence of approximately 30%. The pathogenesis of MASLD is a complex, multisystem disorder driven by multiple factors, including genetics, lifestyle, and the environment. Patient heterogeneity presents challenges in developing MASLD therapeutics, creating patient cohorts for clinical trials, and optimizing therapeutic strategies for specific patient cohorts. Implementing pre-clinical experimental models for drug development creates a significant challenge as simple in vitro systems and animal models do not fully recapitulate critical steps in the pathogenesis and the complexity of MASLD progression. To address this, we implemented a precision medicine strategy that couples the use of our liver acinus microphysiology system (LAMPS) constructed with patient-derived primary cells. We investigated the MASLD-associated genetic variant patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 (I148M variant) in primary hepatocytes as it is associated with MASLD progression. We constructed the LAMPS with genotyped wild-type and variant PNPLA3 hepatocytes, together with key non-parenchymal cells, and quantified the reproducibility of the model. We altered media components to mimic blood chemistries, including insulin, glucose, free fatty acids, and immune-activating molecules to reflect normal fasting (NF), early metabolic syndrome (EMS), and late metabolic syndrome (LMS) conditions. Finally, we investigated the response to treatment with resmetirom, an approved drug for metabolic syndrome-associated steatohepatitis (MASH), the progressive form of MASLD. This study, using primary cells, serves as a benchmark for studies using "patient biomimetic twins" constructed with patient induced pluripotent stem cell (iPSC)-derived liver cells using a panel of reproducible metrics. We observed increased steatosis, immune activation, stellate cell activation, and secretion of pro-fibrotic markers in the PNPLA3 GG variant compared to the wild-type CC LAMPS, consistent with the clinical characterization of this variant. We also observed greater resmetirom efficacy in the PNPLA3 wild-type CC LAMPS compared to the GG variant in multiple MASLD metrics, including steatosis, stellate cell activation, and the secretion of pro-fibrotic markers. In conclusion, our study demonstrates the capability of the LAMPS platform for the development of MASLD precision therapeutics, enrichment of patient cohorts for clinical trials, and optimization of therapeutic strategies for patient subgroups with different clinical traits and disease stages.

11.
Ann Med Surg (Lond) ; 86(9): 5489-5491, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239067

RESUMEN

Introduction and importance: Owing to the high number of envenomation and fatalities, the Russell's viper holds greater medicinal significance than any other Asian serpent. South East Asia is one of the most snakebite-prone regions in the world. Dense population, extensive agricultural practices, the abundance of venomous snake species, and an overall lack of knowledge about primary treatment (first aid) are the major culprits associated with snake bite-related morbidity and mortality. The venom of vipers is known to produce vasculotoxicity and contains hemotoxins. Case presentation: The authors describe a patient who was bitten by a viperine snake and showed signs of both neurotoxicity and acute kidney injury (AKI). The 20 years male was treated in a tertiary care centre in Nepal. The patient developed respiratory failure and needed ventilator support. Further, more haemodialysis was also done to manage AKI. Later, the patient was discharged after a smooth recovery. Discussion: Numerous clinical manifestations, such as neurotoxicity and vasculotoxicity, can result from a viperine bite. The majority of viperine snakebites are hemotoxic. Dual neurotoxic symptoms are possible after a viperine bite despite their rarity. The prevention of respiratory failure depends critically on the early detection of neurotoxicity. Conclusion: Unusual neuromuscular paralysis is caused by Russell's vipers (Daboia russelii) in South East Asia. Physicians should know the exceptional presentations of snakebites to diagnose and treat patients.

12.
Atherosclerosis ; : 118569, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39227208

RESUMEN

Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.

13.
Heliyon ; 10(16): e35635, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220926

RESUMEN

Objective: This study aimed to analyse the association between lipoprotein-associated phospholipase A2 (Lp-PLA2) and 25-hydroxy-vitamin D (25[OH]D) and early diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) and evaluate the potential roles of these two biomarkers in the clinical diagnosis of DKD. Methods: A total of 422 inpatients with T2DM were retrospectively enrolled between January 2018 and March 2022 at the First Affiliated Hospital of Nanjing Medical University. The baseline clinical parameters of each patient were determined, and their demographic characteristics were extracted from the hospital information system. The patients were separated into groups according to serum Lp-PLA2 and 25(OH)D levels and binary logistic regression analysis was used to determine independent predictors of early DKD incidence. Results: Levels of Lp-PLA2 significantly increased and those of 25(OH)D significantly decreased with DKD progression (both P < 0.001). Lp-PLA2 concentrations were positively correlated with albuminuria levels (r = 0.37, P < 0.001), whereas 25(OH)D levels were negatively correlation (r = -0.34, P < 0.001). The incidence of DKD was higher in the Lp-PLA2 elevated and 25(OH)D deficient groups (all P < 0.001). Body mass index, systemic immune-inflammatory index, serum uric acid, C-peptide, and triglyceride-glucose indices were positively associated with Lp-PLA2 levels (all P < 0.001) and negatively associated with 25(OH)D (all P < 0.05). Furthermore, Lp-PLA2 was an independent risk factor (OR = 1.003, P = 0.015), and 25(OH)D was an independent protective factor (OR = 0.937, P = 0.008) for early DKD occurrence in binary logistic regression analysis. The area under the curve for the combination of Lp-PLA2 and 25(OH)D for diagnosing DKD was 0.867, with a sensitivity of 70.4 % and a specificity of 89.5 %. Conclusions: Increased serum Lp-PLA2 and decreased 25(OH)D levels are risk factors for early DKD in patients with T2DM. The combined detection of Lp-PLA2 and 25(OH)D may enhance the diagnostic efficacy of DKD.

15.
Plant Cell Environ ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253961

RESUMEN

Camelina sativa is regarded as a low-input oilseed crop for versatile food, biofuels and industrial applications with potential production on marginal lands, whereas phosphate (Pi) deficiency greatly reduces camelina seed production. To improve camelina resilience to low P conditions, here we overexpressed the Pi deficiency-induced non-specific phospholipase C4 (NPC4) to test its effect on camelina seed production under different levels of Pi availability. NPC4-overexpressing (OE) plants displayed increased seed yield and oil production, with a greater magnitude of increases under Pi-deficient than Pi-sufficient conditions. NPC4-OE camelina had a higher level of total P and free Pi in young leaves but a lower level in old leaves than in wild-type plants. More Pi was moved from old leaves to young leaves in NPC4-OE than in wild-type plants. NPC4-OE increased the expression of Pi transporter genes, and the increase was greater in old leaves and under Pi-deficient conditions. These data indicate that NPC4 improves camelina growth by promoting Pi remobilization from old to young tissues, revealing a mechanism by which NPC4 mediates plant response to Pi deficiency.

16.
Int J Biol Macromol ; 279(Pt 3): 135368, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243566

RESUMEN

Immobilization of enzymes improves their stability and recoverability and is therefore crucial for scientific research and industrial applications. In this study, phospholipase LM (PLLM) and phospholipase 3G (PL3G) were immobilized using Fe3O4@SiO2@CS-COOH polycarboxylated magnetic nanoparticles (MNPs-COOH) as carriers and then used for degumming soybean crude oil. The immobilization rates and relative enzyme activities of these immobilized phospholipases were evaluated to determine the optimal immobilization parameters. The enzyme activities of PLLM-MNPs-COOH and PL3G-MNPs-COOH were 2830.87 and 1162.25 U/g, respectively. Enzymatic properties of the free and immobilized enzymes were compared. Both immobilized phospholipases exhibited higher condition tolerance and stability after immobilization. After 30-day storage at 4 °C, both immobilized phospholipases retained approximately 1.3 times the residual activity of the corresponding free phospholipases. When the degumming conditions were optimized, the residual phosphorus contents of the PLLM-MNPs-COOH- and PL3G-MNPs-COOH-degummed oils were 4.91 and 7.41 mg/kg, respectively, which were consistent with the safety standards for oil products. After 6 cycles, PLLM-MNPs-COOH and PL3G-MNPs-COOH continued to preserve 71.88 % and 70.00 % of their initial activities, respectively. The immobilized phospholipases are thus suitable for degumming soybean crude oil, and the mixed enzymes exhibited better degumming potential.

17.
Cell Rep ; 43(10): 114752, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39298315

RESUMEN

The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39300709

RESUMEN

Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial-mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C-Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1ß, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression-induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.

19.
Kidney Int Rep ; 9(9): 2635-2647, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39291206

RESUMEN

Introduction: Primary membranous nephropathy (PMN) is most often caused by autoantibodies to phospholipase A2 receptor (PLA2R). M-PLACE (NCT04145440) is an open-label, phase 1b/2a study that assessed the safety and efficacy of the fully human anti-CD38 monoclonal antibody felzartamab in high-risk anti-PLA2R+ PMN. Methods: Patients with newly diagnosed or relapsed PMN (cohort 1 [C1]; n = 18) or PMN refractory to immunosuppressive therapy (IST) (cohort 2 [C2]; n = 13) received 9 infusions of felzartamab 16 mg/kg in the 24-week treatment period, followed by a 28-week follow-up. The primary end point was the incidence and severity of treatment-emergent adverse events (TEAEs). Results: A total of 31 patients were enrolled and received felzartamab. Twenty-seven patients (87.1%) had TEAEs, including infusion-related reactions (IRRs) (29.0%), hypogammaglobulinemia (25.8%), peripheral edema (19.4%), and nausea (16.1%). Five patients (16.1%) had serious TEAEs that all resolved. Immunologic response (anti-PLA2R titer reduction ≥50%) was achieved by 20 of 26 efficacy-evaluable patients (76.9%) (C1, 13/15 [86.7%]; C2, 7/11 [63.6%]). Anti-PLA2R titer reductions were rapid (week 1 response, 44.0%; response 7 months after last felzartamab dose [end of study, EOS], 53.8%). Partial proteinuria remission (urine protein-to-creatinine ratio [UPCR] reduction ≥50%, UPCR <3.0 g/g, and stable estimated glomerular filtration rate [eGFR]) was achieved by 9 of 26 patients (34.6%) (C1, 7/15 [46.7%]; C2, 2/11 [18.2%]) before or at EOS (median follow-up, 366 days). Serum albumin increased from baseline to EOS in 20 of 26 patients (76.9%) (C1, 12/15 [80.0%]; C2, 8/11 [72.7%]). Conclusion: In this population with high-risk anti-PLA2R+ PMN, felzartamab was tolerated and resulted in rapid partial and complete immunologic responses and partial improvements in proteinuria and serum albumin in some patients.

20.
J Biol Chem ; : 107758, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260696

RESUMEN

S. Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology, however the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is co-transcribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither co-secreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between wild-type S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA