Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.847
Filtrar
1.
J Biophotonics ; : e202400197, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092484

RESUMEN

Photoacoustic computed tomography (PACT) has centimeter-level imaging ability and can be used to detect the human body. However, strong photoacoustic signals from skin cover deep tissue information, hindering the frontal display and analysis of photoacoustic images of deep regions of interest. Therefore, we propose a 2.5 D deep learning model based on feature pyramid structure and single-type skin annotation to extract the skin region, and design a mask generation algorithm to remove skin automatically. PACT imaging experiments on the human periphery blood vessel verified the correctness our proposed skin-removal method. Compared with previous studies, our method exhibits high robustness to the uneven illumination, irregular skin boundary, and reconstruction artifacts in the images, and the reconstruction errors of PACT images decreased by 20% ~ 90% with a 1.65 dB improvement in the signal-to-noise ratio at the same time. This study may provide a promising way for high-definition PACT imaging of deep tissues.

2.
Photoacoustics ; 38: 100633, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104762

RESUMEN

Quartz tuning fork (QTF)-based techniques of photoacoustic spectroscopy and thermoelastic spectroscopy play a significant role in trace gas sensing due to unique high sensitivity and compactness. However, the stability of both techniques remains plagued by the inevitable and unpredictable laser power variation and demodulation phase variation. Herein, we investigate the phase change of a QTF when integrating both techniques for enhanced gas sensing. By demonstrating harmonic phase-sensitive methane detection as an example, we achieve stable gas measurement at varying laser power (2.4-9.4 mW) and varying demodulation phase (-90-90°). Besides, this method shows more tolerance to resonant frequency drift, contributing to a small signal fluctuation of ≤ 6.4 % over a wide modulation range (>10 times of the QTF bandwidth). The realization of harmonic-phase detection allows strengthening the stability of QTF-based sensors in a simple manner, especially when stable parameters, such as laser power, demodulation phase, even resonant frequency, cannot always be maintained.

3.
Eur J Cancer ; 209: 114259, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39111206

RESUMEN

BACKGROUND: HER2 is a key biomarker for breast cancer treatment and prognosis. Traditional assessment methods like immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are effective but costly and time-consuming. Our model incorporates these methods alongside photoacoustic imaging to enhance diagnostic accuracy and provide more comprehensive clinical insights. MATERIALS AND METHODS: A total of 301 breast tumors were included in this study, divided into HER2-positive (3+ or 2+ with gene amplification) and HER2-negative (below 3+ and 2+ without gene amplification) groups. Samples were split into training and validation sets in a 7:3 ratio. Statistical analyses involved t-tests, chi-square tests, and rank-sum tests. Predictive factors were identified using univariate and multivariate logistic regression, leading to the creation of three models: ModA (clinical factors only), ModB (clinical plus ultrasound factors), and ModC (clinical, ultrasound, and photoacoustic imaging-derived oxygen saturation (SO2)). RESULTS: The area under the curve (AUC) for ModA was 0.756 (95 % CI: 0.69-0.82), ModB increased to 0.866 (95 % CI: 0.82-0.91), and ModC showed the highest performance with an AUC of 0.877 (95 % CI: 0.83-0.92). These results indicate that the comprehensive model combining clinical, ultrasound, and photoacoustic imaging data (ModC) performed best in predicting HER2 expression. CONCLUSION: The findings suggest that integrating clinical, ultrasound, and photoacoustic imaging data significantly enhances the accuracy of predicting HER2 expression. For personalised breast cancer treatment, the integrated model could provide a comprehensive and reproducible decision support tool.

4.
Angew Chem Int Ed Engl ; : e202411840, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115358

RESUMEN

Atherosclerosis is a primary global health concern due to its high morbidity and mortality. This disease is characterized by a complex interplay of chronic inflammation, oxidative stress, and proteolytic enzymes. Traditional imaging techniques struggle to capture the dynamic biochemical processes within atherosclerotic plaques. Herein, we have developed a novel unimolecular photoacoustic probe (UMAPP) that combines specific recognition sites for neutrophil elastase (NE) and the redox pair O2•‒/GSH into a cohesive molecular platform, allowing in vivo monitoring of oxidative stress and activated neutrophils within plaques. UMAPP features a boron-dipyrromethene (BODIPY) core linked to a hydrophilic NE-cleavable tetrapeptide, and dual oxidative stress-responsive catechol moieties, enabling NE-mediated modulation of photoinduced electron transfer, affecting the photoacoustic intensity at 685 nm (PA685), while oxidation and reduction of the catechol groups by O2•‒ and GSH lead to reversible, ratiometric changes in the photoacoustic spectrum. Preliminary applications of UMAPP have successfully differentiated between atherosclerotic and healthy mice, assessed the impact of pneumonia on plaque composition, and validated the probe's efficacy in drug-treatment studies, detecting molecular changes prior to observable histopathological alterations. UMAPP's integrated molecular imaging approach holds significant promise for advancing the diagnosis and management of atherosclerosis by enabling earlier and more precise detection of vulnerable plaques.

5.
Int J Nanomedicine ; 19: 7817-7830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099790

RESUMEN

Background: Photothermal therapy (PTT) guided by photoacoustic imaging (PAI) using nanoplatforms has emerged as a promising strategy for cancer treatment due to its efficiency and accuracy. This study aimed to develop and synthesize novel second near-infrared region (NIR-II) absorption-conjugated polymer acceptor acrylate-substituted thiadiazoloquinoxaline-diketopyrrolopyrrole polymers (PATQ-DPP) designed specifically as photothermal and imaging contrast agents for nasopharyngeal carcinoma (NPC). Methods: The PATQ-DPP nanoparticles were synthesized and characterized for their optical properties, including low optical band gaps. Their potential as PTT agents and imaging contrast agents for NPC was evaluated both in vitro and in vivo. The accumulation of nanoparticles at tumor sites was assessed post-injection, and the efficacy of PTT under near-infrared laser irradiation was investigated in a mouse model of NPC. Results: Experimental results indicated that the PATQ-DPP nanoparticles exhibited significant photoacoustic contrast enhancement and favorable PTT performance. Safety and non-toxicity evaluations confirmed the biocompatibility of these nanoparticles. In vivo studies showed that PATQ-DPP nanoparticles effectively accumulated at NPC tumor sites and demonstrated excellent tumor growth inhibition upon exposure to near-infrared laser irradiation. Notably, complete elimination of nasopharyngeal tumors was observed within 18 days following PTT. Discussion: The findings suggest that PATQ-DPP nanoparticles are a promising theranostic agent for NIR-II PAI and PTT of tumors. This innovative approach utilizing PATQ-DPP nanoparticles provides a powerful tool for the early diagnosis and precise treatment of NPC, offering a new avenue in the management of this challenging malignancy.


Asunto(s)
Nanopartículas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Técnicas Fotoacústicas , Terapia Fototérmica , Animales , Técnicas Fotoacústicas/métodos , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/diagnóstico por imagen , Terapia Fototérmica/métodos , Ratones , Línea Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/diagnóstico por imagen , Nanopartículas/química , Rayos Infrarrojos , Ratones Desnudos , Medios de Contraste/química , Ratones Endogámicos BALB C , Polímeros/química , Femenino
6.
Photoacoustics ; 38: 100629, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100196

RESUMEN

Hydrogen cyanide (HCN) is a toxic industrial chemical, necessitating low-level detection capabilities for safety and environmental monitoring. This study introduces a novel approach for detecting hydrogen cyanide (HCN) using a clamp-type custom quartz tuning fork (QTF) integrated with a dual-tube acoustic micro-resonator (AmR) for enhanced photoacoustic gas sensing. The design and optimization of the AmR geometry were guided by theoretical simulation and experimental validation, resulting in a robust on-beam QEPAS (Quartz-Enhanced Photoacoustic Spectroscopy) configuration. To boost the QEPAS sensitivity, an Erbium-Doped Fiber Amplifier (EDFA) was incorporated, amplifying the laser power by approximately 286 times. Additionally, a transformer-based U-shaped neural network, a machine learning filter, was employed to refine the photoacoustic signal and reduce background noise effectively. This combination yielded a significantly low detection limit for HCN at 0.89 parts per billion (ppb) with a rapid response time of 1 second, marking a substantial advancement in optical gas sensing technologies. Key modifications to the QTF and innovative use of AmR lengths were validated under various experimental conditions, affirming the system's capabilities for real-time, high-sensitivity environmental monitoring and industrial safety applications. This work not only demonstrates significant enhancements in QEPAS but also highlights the potential for further technological advancements in portable gas detection systems.

7.
Photoacoustics ; 38: 100632, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100197

RESUMEN

A fast scanner of optical-resolution photoacoustic microscopy is inherently vulnerable to perturbation, leading to severe image distortion and significant misalignment among multiple 2D or 3D images. Restoration and registration of these images is critical for accurately quantifying dynamic information in long-term imaging. However, traditional registration algorithms face a great challenge in computational throughput. Here, we develop an unsupervised deep learning based registration network to achieve real-time image restoration and registration. This method can correct artifacts from B-scan distortion and remove misalignment among adjacent and repetitive images in real time. Compared with conventional intensity based registration algorithms, the throughput of the developed algorithm is improved by 50 times. After training, the new deep learning method performs better than conventional feature based image registration algorithms. The results show that the proposed method can accurately restore and register the images of fast-scanning photoacoustic microscopy in real time, offering a powerful tool to extract dynamic vascular structural and functional information.

8.
Photoacoustics ; 38: 100634, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100198

RESUMEN

A high-sensitivity photoacoustic spectroscopy (PAS) sensor based on differential Helmholtz photoacoustic cell (DHPAC) with dense spot pattern is reported in this paper for the first time. A multi-pass cell based on two concave mirrors was designed to achieve a dense spot pattern, which realized 212 times excitation of incident laser. A finite element analysis was utilized to simulate the sound field distribution and frequency response of the designed DHPAC. An erbium-doped fiber amplifier (EDFA) was employed to amplify the output optical power of the laser to achieve strong excitation. In order to assess the designed sensor's performance, an acetylene (C2H2) detection system was established using a near infrared diode laser with a central wavelength 1530.3 nm. According to experimental results, the differential characteristics of DHPAC was verified. Compared to the sensor without dense spot pattern, the photoacoustic signal with dense spot pattern had a 44.73 times improvement. The minimum detection limit (MDL) of the designed C2H2-PAS sensor can be improved to 5 ppb when the average time of the sensor system is 200 s.

9.
J Biomed Opt ; 29(8): 080801, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143981

RESUMEN

Significance: Photoacoustic imaging (PAI) is an emerging technology that holds high promise in a wide range of clinical applications, but standardized methods for system testing are lacking, impeding objective device performance evaluation, calibration, and inter-device comparisons. To address this shortfall, this tutorial offers readers structured guidance in developing tissue-mimicking phantoms for photoacoustic applications with potential extensions to certain acoustic and optical imaging applications. Aim: The tutorial review aims to summarize recommendations on phantom development for PAI applications to harmonize efforts in standardization and system calibration in the field. Approach: The International Photoacoustic Standardization Consortium has conducted a consensus exercise to define recommendations for the development of tissue-mimicking phantoms in PAI. Results: Recommendations on phantom development are summarized in seven defined steps, expanding from (1) general understanding of the imaging modality, definition of (2) relevant terminology and parameters and (3) phantom purposes, recommendation of (4) basic material properties, (5) material characterization methods, and (6) phantom design to (7) reproducibility efforts. Conclusions: The tutorial offers a comprehensive framework for the development of tissue-mimicking phantoms in PAI to streamline efforts in system testing and push forward the advancement and translation of the technology.


Asunto(s)
Fantasmas de Imagen , Técnicas Fotoacústicas , Técnicas Fotoacústicas/instrumentación , Técnicas Fotoacústicas/métodos , Humanos , Diseño de Equipo , Reproducibilidad de los Resultados , Calibración
10.
Ann Biomed Eng ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133389

RESUMEN

Ablation therapy is a type of minimally invasive treatment, utilized for various organs including the brain, heart, and kidneys. The accuracy of the ablation process is critically important to avoid both insufficient and excessive ablation, which may result in compromised efficacy or complications. The thermal ablation is formulated by two theoretical models: the heat transfer (HT) and necrosis formation (NF) models. In modern medical practices, feed-forward (FF) and temperature feedback (TFB) controls are primarily used as ablation control methodologies. FF involves pre-therapy procedure planning based on previous experiences and theoretical knowledge without monitoring the intraoperative tissue response, hence, it can't compensate for discrepancies in the assumed HT or NF models. These discrepancies can arise due to individual patient's tissue characteristic differences and specific environmental conditions. Conversely, TFB control is based on the intraoperative temperature profile. It estimates the resulting heat damage based on the monitored temperature distribution and assumed NF model. Therefore, TFB can make necessary adjustments even if there is an error in the assumed HT model. TFB is thus seen as a more robust control method against modeling errors in the HT model. Still, TFB is limited as it assumes a fixed NF model, irrespective of the patient or the ablation technique used. An ideal solution to these limitations would be to actively monitor heat damage to the tissue during the operation and utilize this data to control ablation. This strategy is defined as necrosis feedback (NFB) in this study. Such real-time necrosis monitoring modalities making NFB possible are emerging, however, there is an absence of a generalized study that discusses the integration and quantifies the significance of the real-time necrosis monitor techniques for ablation therapy. Such an investigation is expected to clarify the universal principles of how these techniques would improve ablation therapy. In this study, we examine the potential of NFB in suppressing errors associated with the NF model as NFB is theoretically capable of monitoring and suppressing the errors associated with the NF models in its closed control loop. We simulate and compare the performances of TFB and NFB with artificially generated modeling errors using the finite element method (FEM). The results show that NFB provides more accurate ablation control than TFB when NF-oriented errors are applied, indicating NFB's potential to improve the ablation control accuracy and highlighting the value of the ongoing research to make real-time necrosis monitoring a clinically viable option.

11.
Adv Ther (Weinh) ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39132131

RESUMEN

Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.

12.
Photoacoustics ; 38: 100636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139613

RESUMEN

Spectral photoacoustic imaging in combination with unmixing techniques may be applied to retrieve information about high-risk features present in atherosclerotic plaques, possibly providing prognostic insights into future stroke events. We present the photoacoustic spectral contrast found in 12 systematically scanned advanced atherosclerotic plaques in the near-infrared wavelength range (850-1250 nm). The main absorbers are lipid, water, and hemoglobin, with the highest photoacoustic intensities at the lipid's second overtone at 1190 and 1210 nm. Linear unmixing resulted in visualizing regions with high lipid and hemoglobin absorption, corresponding to the histological presence of lipid and intraplaque hemorrhage. A non-negative matrix factorization approach reveals differences in lipid spectral contrast, providing potential insights into the vulnerability of atherosclerotic plaque. These results provide a reference for future, more complex, in vivo photoacoustic imaging of carotid artery atherosclerosis, potentially contributing to assessing the risk of future events and treatment decision.

13.
J Biophotonics ; : e202400126, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075610

RESUMEN

Radiofrequency (RF) ablation is a minimally invasive therapy for atrial fibrillation. Conventional RF procedures lack intraoperative monitoring of ablation-induced necrosis, complicating assessment of completeness. While spectroscopic photoacoustic (sPA) imaging shows promise in distinguishing ablated tissue, multi-spectral imaging is challenging in vivo due to low imaging quality caused by motion. Here, we introduce a cardiac-gated sPA imaging (CG-sPA) framework to enhance image quality using a motion-gated averaging filter, relying on image similarity. Necrotic extent was calculated based on the ratio between spectral unmixed ablated tissue contrast and total tissue contrast, visualizing as a continuous color map to highlight necrotic area. The validation of the concept was conducted in both ex vivo and in vivo swine models. The ablation-induced necrotic lesion was successfully detected throughout the cardiac cycle through CG-sPA imaging. The results suggest the CG-sPA imaging framework has great potential to be incorporated into clinical workflow to guide ablation procedures intraoperatively.

14.
Photoacoustics ; 38: 100631, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39055738

RESUMEN

We proposed a non-contact photoacoustic (PA) detection method using spectral domain optical coherence tomography (SDOCT). Two interference spectrums (A-lines) were acquired before and after the PA excitation with SDOCT. PA signal propagated within the sample causing the vibration. The vibration inner the sample introduced phase change between the acquired two A-lines. Thus, the PA signal can be detected by evaluating the difference in phase between the two A-lines. Based on the method, an OCT-PAM dual-mode imaging system was constructed. In the system, SDOCT served as the detection unit for PAM. Thus, the combination of the two imaging modalities was simplified. Another advantage of the system is that it realizes non-contact all-optic detection, which is attractive for biomedical imaging. Using the system, we imaged phantoms of carbon fibers, asparagus leaves and human hairs. Furthermore, the cortical vasculature of rat was imaged in vivo and the flow status was evaluated quantitatively.

15.
Neurophotonics ; 11(3): 035005, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081284

RESUMEN

Significance: Many techniques exist for screening retinal phenotypes in mouse models in vision research, but significant challenges remain for efficiently probing higher visual centers of the brain. Photoacoustic computed tomography (PACT), with optical sensitivity to hemodynamic response (HR) in brain and ultrasound resolution, provides unique advantages in comprehensively assessing higher visual function in the mouse brain. Aim: We aim to examine the reliability of PACT in the functional phenotyping of mouse models for vision research. Approach: A PACT-ultrasound (US) parallel imaging system was established with a one-dimensional (1D) US transducer array and a tunable laser. Imaging was performed at three coronal planes of the brain, covering the primary visual cortex and the four subcortical nuclei, including the superior colliculus, the dorsal lateral geniculate nucleus, the suprachiasmatic nucleus, and the olivary pretectal nucleus. The visual-evoked HR was isolated from background signals using an impulse-based data processing protocol. rd1 mice with rod/cone degeneration, melanopsin-knockout (mel-KO) mice with photoreceptive ganglion cells that lack intrinsic photosensitivity, and wild-type mice as controls were imaged. The quantitative characteristics of the visual-evoked HR were compared. Results: Quantitative analysis of the HRs shows significant differences among the three mouse strains: (1) rd1 mice showed both smaller and slower responses compared with wild type ( n = 10,10 , p < 0.01 ) and (2) mel-KO mice had lower amplitude but not significantly delayed photoresponses than wild-type mice ( n = 10,10 , p < 0.01 ). These results agree with the known visual deficits of the mouse strains. Conclusions: PACT demonstrated sufficient sensitivity to detecting post-retinal functional deficits.

16.
Ultrasonics ; 143: 107424, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39084109

RESUMEN

The prestige target selectivity and imaging depth of optical-resolution photoacoustic microscope (OR-PAM) have gained attentions to enable advanced intra-cellular visualizations. However, the broad-band nature of photoacoustic signals is prone to noise and artifacts caused by the inefficient light-to-pressure translation, resulting in poor image quality. The present study foresees application of singular value decomposition (SVD) to effectively extract the photoacoustic signals from these noise and artifacts. Although spatiotemporal SVD succeeded in ultrasound flow signal extraction, the conventional multi frame model is not suitable for data acquired with scanning OR-PAM due to the burden of accessing multiple frames. To utilize SVD on the OR-PAM, this study began with exploring SVD applied on multiple A-lines of photoacoustic signal instead of frames. Upon explorations, an obstacle of uncertain presence of unwanted singular vectors was observed. To tackle this, a data-driven weighting matrix was designed to extract relevant singular vectors based on the analyses of temporal-spatial singular vectors. Evaluation on the extraction capability by the SVD with the weighting matrix showed a superior signal quality with efficient computation against past studies. In summary, this study contributes to the field by providing exploration of SVD applied on A-line signals as well as its practical utilization to distinguish and recover photoacoustic signals from noise and artifact components.

17.
Photoacoustics ; 38: 100630, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39040971

RESUMEN

A comprehensive understanding of a tumor is required for accurate diagnosis and effective treatment. However, currently, there is no single imaging modality that can provide sufficient information. Photoacoustic (PA) imaging is a hybrid imaging technique with high spatial resolution and detection sensitivity, which can be combined with ultrasound (US) imaging to provide both optical and acoustic contrast. Elastography can noninvasively map the elasticity distribution of biological tissue, which reflects pathological conditions. In this study, we incorporated PA elastography into a commercial US/PA imaging system to develop a tri-modality imaging system, which has been tested for tumor detection using four mice with different physiological conditions. The results show that this tri-modality imaging system can provide complementary information on acoustic, optical, and mechanical properties. The enabled visualization and dimension estimation of tumors can lead to a more comprehensive tissue characterization for diagnosis and treatment.

18.
Bioeng Transl Med ; 9(4): e10652, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036081

RESUMEN

Dyes have conventionally been used in medicine for staining cells, tissues, and organelles. Since these compounds are also known as photosensitizers (PSs) which exhibit photoresponsivity upon photon illumination, there is a high desire towards formulating these molecules into nanoparticles (NPs) to achieve improved delivery efficiency and enhanced stability for novel imaging and therapeutic applications. Furthermore, it has been shown that some of the photophysical properties of these molecules can be altered upon NP formation thereby playing a major role in the outcome of their application. In this review, we primarily focus on introducing dye categories, their formulation strategies and how these strategies affect their photophysical properties in the context of photothermal and non-photothermal applications. More specifically, the most recent progress showing the potential of dye supramolecular assemblies in modalities such as photoacoustic and fluorescence imaging, photothermal and photodynamic therapies as well as their employment in photoablation as a novel modality will be outlined. Aside from their photophysical activity, we delve shortly into the emerging application of dyes as drug stabilizing agents where these molecules are used together with aggregator molecules to form stable nanoparticles.

19.
Adv Healthc Mater ; : e2401074, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023394

RESUMEN

The complex and harsh tumor microenvironment imped the efficacy of single-modality tumor therapy. With the advantages of biosafety, organic/inorganic nanohybrids have attracted more and more interest of researchers, and it is critical to investigate the development of highly efficient nanohybrids for multimodality combination therapy of cancers. Herein, a naphthalene diimide-based polycyclic conjugated molecule (NDI-S) is designed and synthesized, which has broader light absorption in the near infrared (NIR) region, outstanding photothermal conversion ability, and excellent photostability. Inorganic CoFe2O4 is synthesized via a solvothermal technique, which can produce much more reactive oxygen species (ROS) as a sonosensitizer when activated by ultrasonic (US). NDI-S and CoFe2O4 are then nanoprecipitated to create the organic/inorganic nanohybrids, NDI-S@CoFe2O4. According to the results of in vitro and in vivo experiments, NDI-S@CoFe2O4 can serve as a multifunctional nanoplatform for multimodal treatment of tumors in combination with photothermal/photodynamic/sonodynamic- therapy under the guidance of photoacoustic imaging, which provides a new vision of the development of organic/inorganic nanohybrids for cancer theranostics.

20.
Biosensors (Basel) ; 14(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39056609

RESUMEN

Bioanalysis based on optical imaging has gained significant progress in the last few decades. Luminescence probes are capable of detecting, monitoring, and tracing particular biomolecules in complex biological systems to figure out the roles of these molecules in organisms. Considering the rapid development of luminescence probes for bio-applications and their promising future, we have attempted to explore the working principles and recent advances in bio-applications of luminescence probes, in the hope of helping readers gain a detailed understanding of luminescence probes developed in recent years. In this review, we first focus on the current widely used luminescence probes, including fluorescence probes, bioluminescence probes, chemiluminescence probes, afterglow probes, photoacoustic probes, and Cerenkov luminescence probes. The working principles for each type of luminescence probe are concisely described and the bio-application of the luminescence probes is summarized by category, including metal ions detection, secretion detection, imaging, and therapy.


Asunto(s)
Técnicas Biosensibles , Luminiscencia , Colorantes Fluorescentes/química , Mediciones Luminiscentes , Humanos , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA