Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Comput Biol Med ; 183: 109216, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383597

RESUMEN

With the rapid advancements in machine learning, its applications in the medical field have garnered increasing interest, particularly in non-invasive health monitoring methods. Blood pressure (BP) estimation using Photoplethysmogram (PPG) signals presents a promising opportunity for real-time, continuous monitoring. However, existing models often struggle with generalization, especially for high-risk groups like hypotension and hypertension, where precise predictions are crucial. In this study, we propose Global Prompt and Prompt Generator (GloGen), a robust few-shot transfer learning framework designed to improve BP estimation using PPG signals. GloGen employs a dual-prompt learning approach, combining Global Prompt (GP) for capturing shared features across signals and an Instance-wise Prompt (IP) for generating personalized prompts for each signal. To enhance model robustness, we also introduce Variance Penalty (VP) that ensures diversity among the generated prompts. Experimental results on benchmark datasets demonstrate that GloGen significantly outperforms conventional methods, both in terms of accuracy and robustness, particularly in underrepresented BP groups, even in scenarios with limited training data. GloGen thus stands out as an efficient solution for real-time, non-invasive BP estimation, with great potential for use in healthcare settings where data is scarce and diverse populations need to be accurately monitored.

2.
Sensors (Basel) ; 24(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39338791

RESUMEN

There are two widely used methods to measure the cardiac cycle and obtain heart rate measurements: the electrocardiogram (ECG) and the photoplethysmogram (PPG). The sensors used in these methods have gained great popularity in wearable devices, which have extended cardiac monitoring beyond the hospital environment. However, the continuous monitoring of ECG signals via mobile devices is challenging, as it requires users to keep their fingers pressed on the device during data collection, making it unfeasible in the long term. On the other hand, the PPG does not contain this limitation. However, the medical knowledge to diagnose these anomalies from this sign is limited by the need for familiarity, since the ECG is studied and used in the literature as the gold standard. To minimize this problem, this work proposes a method, PPG2ECG, that uses the correlation between the domains of PPG and ECG signals to infer from the PPG signal the waveform of the ECG signal. PPG2ECG consists of mapping between domains by applying a set of convolution filters, learning to transform a PPG input signal into an ECG output signal using a U-net inception neural network architecture. We assessed our proposed method using two evaluation strategies based on personalized and generalized models and achieved mean error values of 0.015 and 0.026, respectively. Our method overcomes the limitations of previous approaches by providing an accurate and feasible method for continuous monitoring of ECG signals through PPG signals. The short distances between the infer-red ECG and the original ECG demonstrate the feasibility and potential of our method to assist in the early identification of heart diseases.


Asunto(s)
Electrocardiografía , Frecuencia Cardíaca , Redes Neurales de la Computación , Fotopletismografía , Procesamiento de Señales Asistido por Computador , Humanos , Electrocardiografía/métodos , Fotopletismografía/métodos , Frecuencia Cardíaca/fisiología , Algoritmos , Dispositivos Electrónicos Vestibles
3.
J Atheroscler Thromb ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39168623

RESUMEN

AIM: Increased arterial stiffness impairs the functional and structural properties of arteries, which in turn elevates blood pressure (BP). The aim of this study was to test whether indices obtained from the second derivative of the finger photoplethysmogram (SDPTG), a marker of arterial stiffness, predict future development of hypertension in middle-aged men. METHODS: The SDPTG was measured in 902 men without hypertension (mean age 44±6 years) at an annual medical checkup. The development of hypertension was monitored for a maximum of 4 years. Two indices of arterial stiffness were calculated from the SDPTG waveforms: b/a, an index of large elastic arterial stiffness, and d/a, an index of systemic arterial stiffness, including the structural and functional properties of small and muscular arteries and peripheral circulation. A Cox proportional hazards model was used to examine whether the b/a and d/a ratios were independent predictors of future development of hypertension. RESULTS: During the follow-up period, 124 individuals developed hypertension, defined as a systolic/diastolic BP ≥ 140/90 mm Hg or the use of antihypertensive medications. The hazard ratio for the development of hypertension significantly increased in the lowest quartile of the d/a ratio (2.84, 95% confidence interval: 1.58-5.13, p<0.001) compared with the highest quartile, after adjusting for multiple potential confounders. In contrast, the b/a ratio did not show significant hazard ratios for the development of hypertension. CONCLUSIONS: The d/a ratio, calculated from the SDPTG waveforms, predicted the risk of future development of hypertension in this study population.

4.
IEEE Open J Eng Med Biol ; 5: 637-649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184965

RESUMEN

Objective: A patient-independent approach for continuous estimation of vital signs using robust spectro-temporal features derived from only photoplethysmogram (PPG) signal. Methods: In the pre-processing stage, we remove baseline shifts and artifacts of the PPG signal using Incremental Merge Segmentation with adaptive thresholding. From the cleaned PPG, we extract multiple parameters independent of individual patient PPG morphology for both Respiration Rate (RR) and Blood Pressure (BP). In addition, we derived a set of novel spectral and statistical features strongly correlated to BP. We proposed robust correlation-based feature selection methods for accurate RR estimates. For fewer computations and accurate measurements of BP, the most significant features are selected using correlation and mutual information measures in the feature engineering part. Finally, RR and BP are estimated using breath counting and a neural network regression model, respectively. Results: The proposed approach outperforms the current state-of-the-art in both RR and BP. The RR algorithm results in mean absolute errors (median, 25th-75th percentiles) of 0.4 (0.1-0.7) for CapnoBase dataset and 0.5(0.3-2.8) for BIDMC dataset without discarding any data window. Similarly, BP approach has been validated on a large dataset derived from MIMIC-II ([Formula: see text]1700 records) which has errors (mean absolute, standard deviation) of 5.0(6.3) and 3.0(4.0) for systolic and diastolic BP, respectively. The results meet the American Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) Class A criteria. Conclusion: By using robust features and feature selection methods, we alleviated patient dependency to have reliable estimates of vitals.

5.
Med Biol Eng Comput ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963467

RESUMEN

Continuous blood pressure (BP) provides essential information for monitoring one's health condition. However, BP is currently monitored using uncomfortable cuff-based devices, which does not support continuous BP monitoring. This paper aims to introduce a blood pressure monitoring algorithm based on only photoplethysmography (PPG) signals using the deep neural network (DNN). The PPG signals are obtained from 125 unique subjects with 218 records and filtered using signal processing algorithms to reduce the effects of noise, such as baseline wandering, and motion artifacts. The proposed algorithm is based on pulse wave analysis of PPG signals, extracted various domain features from PPG signals, and mapped them to BP values. Four feature selection methods are applied and yielded four feature subsets. Therefore, an ensemble feature selection technique is proposed to obtain the optimal feature set based on major voting scores from four feature subsets. DNN models, along with the ensemble feature selection technique, outperformed in estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared to previously reported approaches that rely only on the PPG signal. The coefficient of determination ( R 2 ) and mean absolute error (MAE) of the proposed algorithm are 0.962 and 2.480 mmHg, respectively, for SBP and 0.955 and 1.499 mmHg, respectively, for DBP. The proposed approach meets the Advancement of Medical Instrumentation standard for SBP and DBP estimations. Additionally, according to the British Hypertension Society standard, the results attained Grade A for both SBP and DBP estimations. It concludes that BP can be estimated more accurately using the optimal feature set and DNN models. The proposed algorithm has the potential ability to facilitate mobile healthcare devices to monitor continuous BP.

6.
Front Psychiatry ; 15: 1355846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056018

RESUMEN

Introduction: Understanding the interplay between cardiovascular parameters, cognitive stress induced by increasing load, and mental well-being is vital for the development of integrated health strategies today. By monitoring physiological signals like electrocardiogram (ECG) and photoplethysmogram (PPG) in real time, researchers can discover how cognitive tasks influence both cardiovascular and mental health. Cardiac biomarkers resulting from cognitive strain act as indicators of autonomic nervous system function, potentially reflecting conditions related to heart and mental health, including depression and anxiety. The purpose of this study is to investigate how cognitive load affects ECG and PPG measurements and whether these can signal early cardiovascular changes during depression and anxiety disorders. Methods: Ninety participants aged 18 to 45 years, ranging from symptom-free individuals to those with diverse psychological conditions, were assessed using psychological questionnaires and anamnesis. ECG and PPG monitoring were conducted as volunteers engaged in a cognitive 1-back task consisting of two separate blocks, each with six progressively challenging levels. The participants' responses were analyzed to correlate physiological and psychological data with cognitive stressors and outcomes. Results: The study confirmed a notable interdependence between anxiety and depression, and cardiovascular responses. Task accuracy decreased with increased task difficulty. A strong relationship between PPG-measured heart rate and markers of depression and trait anxiety was observed. Increasing task difficulty corresponded to an increase in heart rate, linked with elevated levels of depression and trait anxiety. A strong relationship between ECG-measured heart rate and anxiety attacks was observed. Increasing task difficulty corresponded to an increase in heart rate, linked with elevated levels of anxiety attacks, although this association decreased under more challenging conditions. Discussion: The findings underscore the predictive importance of ECG and PPG heart rate parameters in mental health assessment, particularly depression and anxiety under cognitive stress induced by increasing load. We discuss mechanisms of sympathetic activation explaining these differences. Our research outcomes have implications for clinical assessments and wearable device algorithms for more precise, personalized mental health diagnostics.

7.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894487

RESUMEN

Comprehending the regulatory mechanisms influencing blood pressure control is pivotal for continuous monitoring of this parameter. Implementing a personalized machine learning model, utilizing data-driven features, presents an opportunity to facilitate tracking blood pressure fluctuations in various conditions. In this work, data-driven photoplethysmograph features extracted from the brachial and digital arteries of 28 healthy subjects were used to feed a random forest classifier in an attempt to develop a system capable of tracking blood pressure. We evaluated the behavior of this latter classifier according to the different sizes of the training set and degrees of personalization used. Aggregated accuracy, precision, recall, and F1-score were equal to 95.1%, 95.2%, 95%, and 95.4% when 30% of a target subject's pulse waveforms were combined with five randomly selected source subjects available in the dataset. Experimental findings illustrated that incorporating a pre-training stage with data from different subjects made it viable to discern morphological distinctions in beat-to-beat pulse waveforms under conditions of cognitive or physical workload.


Asunto(s)
Presión Sanguínea , Aprendizaje Automático , Fotopletismografía , Humanos , Presión Sanguínea/fisiología , Masculino , Fotopletismografía/métodos , Femenino , Adulto , Cognición/fisiología , Algoritmos , Carga de Trabajo , Determinación de la Presión Sanguínea/métodos , Adulto Joven
8.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931763

RESUMEN

Respiratory rate (RR) is a vital indicator for assessing the bodily functions and health status of patients. RR is a prominent parameter in the field of biomedical signal processing and is strongly associated with other vital signs such as blood pressure, heart rate, and heart rate variability. Various physiological signals, such as photoplethysmogram (PPG) signals, are used to extract respiratory information. RR is also estimated by detecting peak patterns and cycles in the signals through signal processing and deep-learning approaches. In this study, we propose an end-to-end RR estimation approach based on a third-generation artificial neural network model-spiking neural network. The proposed model employs PPG segments as inputs, and directly converts them into sequential spike events. This design aims to reduce information loss during the conversion of the input data into spike events. In addition, we use feedback-based integrate-and-fire neurons as the activation functions, which effectively transmit temporal information. The network is evaluated using the BIDMC respiratory dataset with three different window sizes (16, 32, and 64 s). The proposed model achieves mean absolute errors of 1.37 ± 0.04, 1.23 ± 0.03, and 1.15 ± 0.07 for the 16, 32, and 64 s window sizes, respectively. Furthermore, it demonstrates superior energy efficiency compared with other deep learning models. This study demonstrates the potential of the spiking neural networks for RR monitoring, offering a novel approach for RR estimation from the PPG signal.


Asunto(s)
Redes Neurales de la Computación , Fotopletismografía , Frecuencia Respiratoria , Procesamiento de Señales Asistido por Computador , Humanos , Frecuencia Respiratoria/fisiología , Fotopletismografía/métodos , Frecuencia Cardíaca/fisiología , Algoritmos , Aprendizaje Profundo
9.
J Biomed Inform ; 156: 104680, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914411

RESUMEN

OBJECTIVE: Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time. METHODS: In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery. RESULTS: Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948-0.974) in internal validation and 0.922 (95% CI, 0.882-0.959) in external validation, respectively. CONCLUSION: The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.


Asunto(s)
Transfusión Sanguínea , Humanos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Algoritmos , Anciano , Monitoreo Intraoperatorio/métodos , Monitorización Hemodinámica/métodos , Adulto , Aprendizaje Profundo , Curva ROC , Hemodinámica , Hematócrito , Pérdida de Sangre Quirúrgica
10.
Psychiatry Investig ; 21(5): 528-538, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811002

RESUMEN

OBJECTIVE: The development of individual subtypes based on biomarkers offers a cost-effective and timely avenue to comprehending individual differences pertaining to mental health, independent from individuals' subjective insights. Incorporating 2-channel electroencephalography (EEG) and photoplethysmogram (PPG), we sought to establish a subtype classification system with clinical relevance. METHODS: One hundred healthy participants and 99 patients with psychiatric disorders were recruited. Classification thresholds were determined using the EEG and PPG data from 2,278 individuals without mental disorders, serving to classify subtypes in our sample of 199 participants. Multivariate analysis of variance was applied to examine psychological distinctions among these subtypes. K-means clustering was employed to verify the classification system. RESULTS: The distribution of subtypes differed between healthy participants and those with psychiatric disorders. Cognitive abilities were contingent upon brain subtypes, while mind subtypes exhibited significant differences in symptom severity, overall health, and cognitive stress. K-means clustering revealed that the results of our theory-based classification and data-driven classification are comparable. The synergistic assessment of both brain and mind subtypes was also explored. CONCLUSION: Our subtype classification system offers a concise means to access individuals' mental health. The utilization of EEG and PPG signals for subtype classification offers potential for the future of digital mental healthcare.

11.
Physiol Meas ; 45(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38776947

RESUMEN

Objective.Assessing signal quality is crucial for biomedical signal processing, yet a precise mathematical model for defining signal quality is often lacking, posing challenges for experts in labeling signal qualities. The situation is even worse in the free living environment.Approach.We propose to model a PPG signal by the adaptive non-harmonic model (ANHM) and apply a decomposition algorithm to explore its structure, based on which we advocate a reconsideration of the concept of signal quality.Main results.We demonstrate the necessity of this reconsideration and highlight the relationship between signal quality and signal decomposition with examples recorded from the free living environment. We also demonstrate that relying on mean and instantaneous heart rates derived from PPG signals labeled as high quality by experts without proper reconsideration might be problematic.Significance.A new method, distinct from visually inspecting the raw PPG signal to assess its quality, is needed. Our proposed ANHM model, combined with advanced signal processing tools, shows potential for establishing a systematic signal decomposition based signal quality assessment model.


Asunto(s)
Fotopletismografía , Procesamiento de Señales Asistido por Computador , Fotopletismografía/métodos , Humanos , Algoritmos , Frecuencia Cardíaca/fisiología , Control de Calidad , Masculino
12.
Heliyon ; 10(8): e29127, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38655294

RESUMEN

Trace elements, often used as dietary supplements, are widely accessible without prescription at pharmacies. Pronutri has pioneered Nutripuncture®, a methodology that utilizes orally consumed trace elements to elicit a physiological response akin to that of acupuncture. Pronutri has empirically observed that the user's voice becomes deeper following an exclusive ingestion procedure. Given that alterations in vocal characteristics are often linked to stress, the Pronutri researchers postulated that the pills have the capacity to promptly alleviate stress upon ingestion. Nevertheless, there is a lack of scientific substantiation about the impact of these supplements on voice (or stress) indicators. The aim of this research was to determine whether there is a consistent impact of trace element ingestion on vocal characteristics, namely the fundamental frequency of the voice, as well as other physiological and psychological stress measurements. In order to achieve this objective, we have devised a unique methodology to examine this hypothesis. This involves conducting a monocentric crossover, randomized, triple-blind, placebo-controlled trial with a sample size of 43 healthy individuals. This study demonstrates that compared to placebo tablets, consuming 10 metal traces containing tablets at once is enough to cause noticeable changes in the vocal spectrum in the direction of an improvement of the voice timbre "richness", and a decrease in the occurrence of spontaneous electrodermal activity, suggesting a stress reduction. However, there were no significant changes observed in the other parameters that were tested. These parameters include vocal measures such as voice frequency F0, standard deviation from this frequency, jitter, and shimmer. Additionally, physiological measures such as respiratory rate, oxygenation and heart rate variability parameters, as well as psychological measures such as self-assessment analogic scales of anxiety, stress, muscle tension, and nervous tension, did not show any significant changes. Ultimately, our research revealed that the ingestion of 10 trace elements pills may promptly elicit a targeted impact on both vocal spectrum and electrodermal activity. Despite the limited impact, these findings warrant more research to explore the long-term effects of trace elements on voice and stress reduction.

13.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38610459

RESUMEN

Heart failure is a prevalent cardiovascular condition with significant health implications, necessitating effective diagnostic strategies for timely intervention. This study explores the potential of continuous monitoring of non-invasive signals, specifically integrating photoplethysmogram (PPG) and electrocardiogram (ECG), for enhancing early detection and diagnosis of heart failure. Leveraging a dataset from the MIMIC-III database, encompassing 682 heart failure patients and 954 controls, our approach focuses on continuous, non-invasive monitoring. Key features, including the QRS interval, RR interval, augmentation index, heart rate, systolic pressure, diastolic pressure, and peak-to-peak amplitude, were carefully selected for their clinical relevance and ability to capture cardiovascular dynamics. This feature selection not only highlighted important physiological indicators but also helped reduce computational complexity and the risk of overfitting in machine learning models. The use of these features in training machine learning algorithms led to a model with impressive accuracy (98%), sensitivity (97.60%), specificity (96.90%), and precision (97.20%). Our integrated approach, combining PPG and ECG signals, demonstrates superior performance compared to single-signal strategies, emphasizing its potential in early and precise heart failure diagnosis. The study also highlights the importance of continuous monitoring with wearable technology, suggesting a significant stride forward in non-invasive cardiovascular health assessment. The proposed approach holds promise for implementation in hardware systems to enable continuous monitoring, aiding in early detection and prevention of critical health conditions.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Electrocardiografía , Algoritmos , Aprendizaje Automático
14.
Heliyon ; 10(6): e27779, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533045

RESUMEN

Background and objective: Hypertension is a potentially dangerous health condition that can be detected by measuring blood pressure (BP). Blood pressure monitoring and measurement are essential for preventing and treating cardiovascular diseases. Cuff-based devices, on the other hand, are uncomfortable and prevent continuous BP measurement. Methods: In this study, a new non-invasive and cuff-less method for estimating Systolic Blood Pressure (SBP), Mean Arterial Pressure (MAP), and Diastolic Blood Pressure (DBP) has been proposed using characteristic features of photoplethysmogram (PPG) signals and nonlinear regression algorithms. PPG signals were collected from 219 participants, which were then subjected to preprocessing and feature extraction steps. Analyzing PPG and its derivative signals, a total of 46 time, frequency, and time-frequency domain features were extracted. In addition, the age and gender of each subject were also included as features. Further, correlation-based feature selection (CFS) and Relief F feature selection (ReliefF) techniques were used to select the relevant features and reduce the possibility of over-fitting the models. Finally, support vector regression (SVR), K-nearest neighbour regression (KNR), decision tree regression (DTR), and random forest regression (RFR) were established to develop the BP estimation model. Regression models were trained and evaluated on all features as well as selected features. The best regression models for SBP, MAP, and DBP estimations were selected separately. Results: The SVR model, along with the ReliefF-based feature selection algorithm, outperforms other algorithms in estimating the SBP, MAP, and DBP with the mean absolute error of 2.49, 1.62 and 1.43 mmHg, respectively. The proposed method meets the Advancement of Medical Instrumentation standard for BP estimations. Based on the British Hypertension Society standard, the results also fall within Grade A for SBP, MAP, and DBP. Conclusion: The findings show that the method can be used to estimate blood pressure non-invasively, without using a cuff or calibration, and only by utilizing the PPG signal characteristic features.

15.
Diagnostics (Basel) ; 14(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38337800

RESUMEN

Respiratory rate (RR) is a critical vital sign that can provide valuable insights into various medical conditions, including pneumonia. Unfortunately, manual RR counting is often unreliable and discontinuous. Current RR estimation algorithms either lack the necessary accuracy or demand extensive window sizes. In response to these challenges, this study introduces a novel method for continuously estimating RR from photoplethysmogram (PPG) with a reduced window size and lower processing requirements. To evaluate and compare classical and deep learning algorithms, this study leverages the BIDMC and CapnoBase datasets, employing the Respiratory Rate Estimation (RRest) toolbox. The optimal classical techniques combination on the BIDMC datasets achieves a mean absolute error (MAE) of 1.9 breaths/min. Additionally, the developed neural network model utilises convolutional and long short-term memory layers to estimate RR effectively. The best-performing model, with a 50% train-test split and a window size of 7 s, achieves an MAE of 2 breaths/min. Furthermore, compared to other deep learning algorithms with window sizes of 16, 32, and 64 s, this study's model demonstrates superior performance with a smaller window size. The study suggests that further research into more precise signal processing techniques may enhance RR estimation from PPG signals.

16.
JRSM Cardiovasc Dis ; 13: 20480040231225384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314325

RESUMEN

Introduction: Photoplethysmogram signals from wearable devices typically measure heart rate and blood oxygen saturation, but contain a wealth of additional information about the cardiovascular system. In this study, we compared two signal-processing techniques: fiducial point analysis and Symmetric Projection Attractor Reconstruction, on their ability to extract new cardiovascular information from a photoplethysmogram signal. The aim was to identify fiducial point analysis and Symmetric Projection Attractor Reconstruction indices that could classify photoplethysmogram signals, according to age, sex and physical activity. Methods: Three datasets were used: an in-silico dataset of simulated photoplethysmogram waves for healthy male participants (25-75 years old); an in-vivo dataset containing 10-min photoplethysmogram recordings from 57 healthy subjects at rest (18-39 or > 70 years old; 53% female); and an in-vivo dataset containing photoplethysmogram recordings collected for 4 weeks from a single subject, in daily life. The best-performing indices from the in-silico study (5/48 fiducial point analysis and 6/49 Symmetric Projection Attractor Reconstruction) were applied to the in-vivo datasets. Results: Key fiducial point analysis and Symmetric Projection Attractor Reconstruction indices, which showed the greatest differences between groups, were found to be consistent across datasets. These indices were related to systolic augmentation, diastolic peak positioning and prominence, and waveform variability. Both fiducial point analysis and Symmetric Projection Attractor Reconstruction techniques provided indices that supported the classification of age and physical activity, but not sex. Conclusions: Both fiducial point analysis and Symmetric Projection Attractor Reconstruction techniques demonstrated utility in identifying cardiovascular differences between individuals and within an individual over time. Future research should investigate the potential utility of these techniques for extracting information on fitness and disease, to support healthcare-decision making.

17.
J Healthc Inform Res ; 8(1): 140-157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38273980

RESUMEN

Photoplethysmogram (PPG) performs an important role in alarming atrial fibrillation (AF). While the importance of PPG is emphasized, there is insufficient amount of openly available atrial fibrillation PPG data. We propose a U-net-based generative adversarial network (GAN) which synthesize PPG from paired electrocardiogram (ECG). To measure the performance of the proposed GAN, we compared the generated PPG to reference PPG in terms of morphology similarity and also examined its influence on AF detection classifier performance. First, morphology was compared using two different metrics against the reference signal: percent root mean square difference (PRD) and Pearson correlation coefficient. The mean PRD and Pearson correlation coefficient were 27% and 0.94, respectively. Heart rate variability (HRV) of the reference AF ECG and the generated PPG were compared as well. The p-value of the paired t-test was 0.248, indicating that no significant difference was observed between the two HRV values. Second, to validate the generated AF PPG dataset, four different datasets were prepared combining the generated PPG and real AF PPG. Each dataset was used to optimize a classification model while maintaining the same architecture. A test dataset was prepared to test the performance of each optimized model. Subsequently, these datasets were used to test the hypothesis whether the generated data benefits the training of an AF classifier. Comparing the performance metrics of each optimized model, the training dataset consisting of generated and real AF PPG showed a test accuracy result of 0.962, which was close to that of the dataset consisting only of real AF PPG data at 0.961. Furthermore, both models yielded the same F1 score of 0.969. Lastly, using only the generated AF PPG dataset resulted in test accuracy of 0.945, indicating that the trained model was capable of generating valuable AF PPG. Therefore, it can be concluded that the generated AF PPG can be used to augment insufficient data. To summarize, this study proposes a GAN-based method to generate atrial fibrillation PPG that can be used for training atrial fibrillation PPG classification models.

18.
Physiol Meas ; 45(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38176078

RESUMEN

Smoking is widely recognized as a significant risk factor in the progression of arterial stiffness and cardiovascular diseases. Valuable information related to cardiac arrhythmias and heart function can be obtained by analyzing biosignals such as the electrocardiogram (ECG) and the photoplethysmogram (PPG). The PPG signal is a non-invasive optical technique that can be used to evaluate the changes in blood volume, and thus it can be linked to the health of the vascular system.Objective. In this study, the impact of three smoking habits-cigarettes, shisha, and electronic cigarettes (e-cigarettes)-on the features of the PPG signal were investigated.Approach. The PPG signals are measured for 45 healthy smokers before, during, and after the smoking session and then processed to extract the morphological features. Quantitative statistical techniques were used to analyze the PPG features and provide the most significant features of the three smoking habits. The impact of smoking is observed through significant changes in the features of the PPG signal, indicating blood volume instability.Main results. The results revealed that the three smoking habits influence the characteristics of the PPG signal significantly, which presentseven after 15 min of smoking. Among them, shisha has the greatest impact on PPG features, particularly on heart rate, systolic time, augmentation index, and peak pulse interval change. In contrast, e-cigarettes have the least effect on PPG features. Interestingly, smoking electronic cigarettes, which many participants use as a substitute for traditional cigarettes when attempting to quit smoking, has nearly a comparable effect to regular smoking.Significance. The findings suggest that individuals who smoke shisha are more likely to develop cardiovascular diseases at an earlier age compared to those who have other smoking habits. Understanding the variations in the PPG signal caused by smoking can aid in the early detection of cardiovascular disorders and provide insight into cardiac conditions. This ultimately contributes to the prevention of the development of cardiovascular diseases and the development of a health screening system.


Asunto(s)
Enfermedades Cardiovasculares , Sistemas Electrónicos de Liberación de Nicotina , Humanos , Fotopletismografía/métodos , Fumar/efectos adversos , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador
19.
World J Emerg Med ; 15(1): 16-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188554

RESUMEN

BACKGROUND: Unsustained return of spontaneous circulation (ROSC) is a critical barrier to survival in cardiac arrest patients. This study examined whether end-tidal carbon dioxide (ETCO2) and pulse oximetry photoplethysmogram (POP) parameters can be used to identify unsustained ROSC. METHODS: We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014. Patients' general information, ETCO2, and POP parameters were collected and statistically analyzed. RESULTS: The included 105 ROSC episodes (from 80 cardiac arrest patients) comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes. The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group (29.2% vs. 9.4%, P<0.05). The logistic regression analysis showed that the difference between after and before ROSC in ETCO2 (ΔETCO2) and the difference between after and before ROCS in area under the curve of POP (ΔAUCp) were independently associated with sustained ROSC (odds ratio [OR]=0.931, 95% confidence interval [95% CI] 0.881-0.984, P=0.011 and OR=0.998, 95% CI 0.997-0.999, P<0.001). The area under the receiver operating characteristic curve of ΔETCO2, ΔAUCp, and the combination of both to predict unsustained ROSC were 0.752 (95% CI 0.660-0.844), 0.883 (95% CI 0.818-0.948), and 0.902 (95% CI 0.842-0.962), respectively. CONCLUSION: Patients with unsustained ROSC have a poor prognosis. The combination of ΔETCO2 and ΔAUCp showed significant predictive value for unsustained ROSC.

20.
Psychophysiology ; 61(4): e14480, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37971153

RESUMEN

In this study, we conducted research on a deep learning-based blood pressure (BP) estimation model suitable for wearable environments. To measure BP while wearing a wearable watch, it needs to be considered that computing power for signal processing is limited and the input signals are subject to noise interference. Therefore, we employed a convolutional neural network (CNN) as the BP estimation model and utilized time-series electrocardiogram (ECG) and photoplethysmogram (PPG) signals, which are quantifiable in a wearable context. We generated periodic input signals and used differential and thresholding methods to decrease noise in the preprocessing step. We then applied a max-pooling technique with filter sizes of 2 × 1 and 5 × 1 within a 3-layer convolutional neural network to estimate BP. Our method was trained, validated, and tested using 2.4 million data samples from 49 patients in the intensive care unit. These samples, totaling 3.1 GB were obtained from the publicly accessible MIMIC database. As a result of a test with 480,000 data samples, the average root mean square error in BP estimation was 3.41, 5.80, and 2.78 mm Hg in the prediction of pulse pressure, systolic BP (SBP), and diastolic BP (DBP), respectively. The cumulative error percentage less than 5 mm Hg was 68% and 93% for SBP and DBP, respectively. In addition, the cumulative error percentage less than 15 mm Hg was 98% and 99% for SBP and DBP. Subsequently, we evaluated the impact of changes in input signal length (1 cycle vs. 30 s) and the introduction of noise on BP estimation results. The experimental results revealed that the length of the input signal did not significantly affect the performance of CNN-based analysis. When estimating BP using noise-added ECG signals, the mean absolute error (MAE) for SBP and DBP was 9.72 and 6.67 mm Hg, respectively. Meanwhile, when using noise-added PPG signals, the MAE for SBP and DBP was 26.85 and 14.00 mm Hg, respectively. Therefore, this study confirmed that using ECG signals rather than PPG signals is advantageous for noise reduction in a wearable environment. Besides, short sampling frames without calibration can be effective as input signals. Furthermore, it demonstrated that using a model suitable for information extraction rather than a specialized deep learning model for sequential data can yield satisfactory results in BP estimation.


Asunto(s)
Determinación de la Presión Sanguínea , Fotopletismografía , Humanos , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Calibración , Fotopletismografía/métodos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA