Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 17(1): 2146373, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36382615

RESUMEN

Finger millet (ragi) is the main food grain for many people, especially in the arid and semiarid regions of developing countries in Asia and Africa. The grains contain an exceptionally higher amount of Ca (>300 mg/100 g) when compared to other major cereals. For sustainable production of ragi in the current scenario of climate change, this study aimed to evaluate the impact of Trichoderma harzianum (TRI) on ragi performance. The performance of photosynthetic pigment pool, photosynthetic apparatus, and root dynamics of three varieties of ragi (PRM-1, PRM-701, and PRM-801) in response to four treatments viz., C (soil), S+ TRI (soil + Trichoderma), farmyard manure (soil+ FYM), and FYM+TRI (Soil + FYM + Trichoderma) were studied. Results have shown a significant increase in the photosynthetic pigment pool and optimized functional and structural integrity of the photosynthetic apparatus in response to the combination of farmyard manure (FYM) with TRI. Higher yield parameters viz., φ(Po) and φ(Eo), δ(Ro), efficiency ψ(Eo), performance indices - PIabs and PItotal, and enhanced root canopy and biomass were observed in all three varieties. Improved electron transport from PSII to PSI, root canopy and biomass, may also suitably favor biological carbon sequestration to retain soil health and plant productivity in case grown in association with FYM and TRI.


Asunto(s)
Eleusine , Trichoderma , Estiércol , Transporte de Electrón , Suelo/química , Grano Comestible
2.
Biochim Biophys Acta Bioenerg ; 1861(8): 148211, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32315624

RESUMEN

Flavodoxins are electron carrier flavoproteins present in bacteria and photosynthetic microorganisms which duplicate the functional properties of iron-sulphur containing ferredoxins and replace them under adverse environmental situations that lead to ferredoxin decline. When expressed in plant chloroplasts, flavodoxin complemented ferredoxin deficiency and improved tolerance to multiple sources of biotic, abiotic and xenobiotic stress. Analysis of flavodoxin-expressing plants grown under normal conditions, in which the two carriers are present, revealed phenotypic effects unrelated to ferredoxin replacement. Flavodoxin thus provided a tool to alter the chloroplast redox poise in a customized way and to investigate its consequences on plant physiology and development. We describe herein the effects exerted by the flavoprotein on the function of the photosynthetic machinery. Pigment analysis revealed significant increases in chlorophyll a, carotenoids and chlorophyll a/b ratio in flavodoxin-expressing tobacco lines. Results suggest smaller antenna size in these plants, supported by lower relative contents of light-harvesting complex proteins. Chlorophyll a fluorescence and P700 spectroscopy measurements indicated that transgenic plants displayed higher quantum yields for both photosystems, a more oxidized plastoquinone pool under steady-state conditions and faster plastoquinone dark oxidation after a pulse of saturating light. Many of these effects resemble the phenotypes exhibited by leaves adapted to high irradiation, a most common environmental hardship faced by plants growing in the field. The results suggest that flavodoxin-expressing plants would be better prepared to cope with this adverse situation, and concur with earlier observations reporting that hundreds of stress-responsive genes were induced in the absence of stress in these lines.


Asunto(s)
Aclimatación/efectos de la radiación , Flavodoxina/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Nicotiana/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Relación Dosis-Respuesta en la Radiación , Fenotipo , Hojas de la Planta/efectos de la radiación , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/efectos de la radiación
3.
Plants (Basel) ; 8(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718069

RESUMEN

Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to available evidence and the role played by environmental and developmental cues such as stress and phytohormones. The collected results indicate that chloroplasts could cooperate with other redox sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence for a best use of the recycled nutrients in plant reproduction.

4.
Pest Manag Sci ; 73(11): 2360-2371, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28544262

RESUMEN

BACKGROUND: The photosynthetic apparatus is targeted by various herbicides, including several amides such as diuron and linuron. Considering the need for the discovery of new active ingredients to cope with weed resistance, the synthesis of a series of trifluoromethyl aryl amides is herein described whose inhibitory properties were assessed in vitro on the photosynthetic electron transport chain, and in vivo on the growth of a model cyanobacterial strain. Theoretical studies were also carried out. RESULTS: Starting with 1-fluoro-2-nitro-4-(trifluoromethyl) benzene, the preparation of the amides was achieved via a three-step sequence, namely nucleophilic aromatic substitution, reduction with SnCl2 /HCl, and acylation reactions. The measurement of ferricyanide reduction by functionally intact spinach chloroplasts showed that several derivatives are capable of inhibiting the photosynthetic apparatus. The most active amides presented IC50 values close to 1 µmol L-1 , and showed the presence of a 4-bromophenyl group as a common structural feature. The addition of these brominated amides to the culture medium of a model cyanobacterial strain, Synechococcus elongatus PCC 6301, caused various degrees of growth inhibition. Theoretical studies (molecular modeling and quantitative structure-activity relationship) of all amides and their comparison with some known herbicides confirmed these experimental findings and provided more in-depth information about the possible molecular target of these compounds. CONCLUSION: Trifluoromethyl amides herein described, which were shown to act at the PSII level, may represent a novel scaffold to be exploited aiming at the development of new active ingredients for weed control. © 2017 Society of Chemical Industry.


Asunto(s)
Herbicidas/farmacología , Fotosíntesis/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Transporte de Electrón , Herbicidas/síntesis química , Herbicidas/toxicidad , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Spinacia oleracea/efectos de los fármacos , Synechococcus/efectos de los fármacos , Control de Malezas
5.
Plant Sci ; 214: 74-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24268165

RESUMEN

The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance.


Asunto(s)
Ascorbato Peroxidasas/genética , Proteínas de Cloroplastos/genética , Oryza/genética , Estrés Oxidativo/fisiología , Fotosíntesis/genética , Proteínas de Plantas/genética , Ascorbato Peroxidasas/metabolismo , Proteínas de Cloroplastos/metabolismo , Electroforesis en Gel Bidimensional , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Herbicidas/farmacología , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Oryza/efectos de los fármacos , Oryza/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Paraquat/farmacología , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Ionización de Electrospray
6.
Plant Physiol Biochem ; 73: 326-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24184453

RESUMEN

The physiological responses of C4 species to simultaneous water deficit and low substrate temperature are poorly understood, as well as the recovery capacity. This study investigated whether the effect of these abiotic stressors is cultivar-dependent. The differential responses of drought-resistant (IACSP94-2094) and drought-sensitive (IACSP97-7065) sugarcane cultivars were characterized to assess the relationship between photosynthesis and antioxidant protection by APX and SOD isoforms under stress conditions. Our results show that drought alone or combined with low root temperature led to excessive energetic pressure at the PSII level. Heat dissipation was increased in both genotypes, but the high antioxidant capacity due to higher SOD and APX activities was genotype-dependent and it operated better in the drought-resistant genotype. High SOD and APX activities were associated with a rapid recovery of photosynthesis in IACSP94-2094 plants after drought and low substrate temperature alone or simultaneously.


Asunto(s)
Ascorbato Peroxidasas/genética , Frío , Sequías , Fotosíntesis/genética , Saccharum/genética , Superóxido Dismutasa/genética , Agua , Adaptación Fisiológica/genética , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Genotipo , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Transpiración de Plantas , Saccharum/enzimología , Saccharum/metabolismo , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo
7.
FEBS Open Bio ; 1: 7-13, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23650570

RESUMEN

Oxidative stress in plants causes ferredoxin down-regulation and NADP(+) shortage, over-reduction of the photosynthetic electron transport chain, electron leakage to oxygen and generation of reactive oxygen species (ROS). Expression of cyanobacterial flavodoxin in tobacco chloroplasts compensates for ferredoxin decline and restores electron delivery to productive routes, resulting in enhanced stress tolerance. We have designed an in vivo system to optimize flavodoxin reduction and NADP(+) regeneration under stress using a version of cyanobacterial ferredoxin-NADP(+) reductase without the thylakoid-binding domain. Co-expression of the two soluble flavoproteins in the chloroplast stroma resulted in lines displaying maximal tolerance to redox-cycling oxidants, lower damage and decreased ROS accumulation. The results underscore the importance of chloroplast redox homeostasis in plants exposed to adverse conditions, and provide a tool to improve crop tolerance toward environmental hardships.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA