Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092599

RESUMEN

The processing of multicolor noisy images in visual neuromorphic devices requires selective absorption at specific wavelengths; however, it is difficult to achieve this because the spectral absorption range of the device is affected by the type of material. Surprisingly, the absorption range of perovskite materials can be adjusted by doping. Herein, a CdCl2 co-doped CsPbBr3 nanocrystal-based photosensitive synaptic transistor (PST) is reported. By decreasing the doping concentration, the response of the PST to short-wavelength light is gradually enhanced, and even weak light of 40 µW·cm-2 can be detected. Benefiting from the excellent color selectivity of the PST device, the device array is applied to feature extraction of target blue items and removal of red and green noise, which results in the recognition accuracy of 95% for the noisy MNIST data set. This work provides new ideas for the application of novel transistors integrating sensors and storage computing.

2.
Adv Mater ; : e2403538, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39040000

RESUMEN

Visuomorphic computing aims to simulate and potentially surpass the human retina by mimicking biological visual perception with an artificial retina. Despite significant progress, challenges persist in perceiving complex interactive environments. Negative photoconductivity transistors (NPTs) mimic synaptic behavior by achieving adjustable positive photoconductivity (PPC) and negative photoconductivity (NPC), simulating "excitation" and "inhibition" akin to sensory cell signals. In complex interactive environments, NPTs are desired for visuomorphic computing that can achieve a better sense of information, lower power consumption, and reduce hardware complexity. In this review, it is started by introducing the development process of NPTs, while placing a strong emphasis on the device structures, working mechanisms, and key performance parameters. The common material systems employed in NPTs based on their functions are then summarized. Moreover, it is proceeded to summarize the noteworthy applications of NPTs in optoelectronic devices, including advanced multibit nonvolatile memory, optoelectronic logic gates, optical encryption, and visual perception. Finally, the challenges and prospects that lie ahead in the ongoing development of NPTs are addressed, offering valuable insights into their applications in optoelectronics and a comprehensive understanding of their significance.

3.
Nanomaterials (Basel) ; 14(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998745

RESUMEN

The graphene adjustable-barriers phototransistor is an attractive novel device for potential high speed and high responsivity dual-band photodetection. In this device, graphene is embedded between the semiconductors silicon and germanium. Both n-type and p-type Schottky contacts between graphene and the semiconductors are required for this device. While n-type Schottky contacts are widely investigated, reports about p-type Schottky contacts between graphene and the two involved semiconductors are scarce. In this study, we demonstrate a p-type Schottky contact between graphene and p-germanium. A clear rectification with on-off ratios of close to 103 (±5 V) and a distinct photoresponse at telecommunication wavelengths in the infrared are achieved. Further, p-type silicon is transferred to or deposited on graphene, and we also observe rectification and photoresponse in the visible range for some of these p-type Schottky junctions. These results are an important step toward the realization of functional graphene adjustable-barrier phototransistors.

4.
ACS Appl Mater Interfaces ; 16(28): 36527-36538, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38961586

RESUMEN

The development of broadband photosensors has become crucial in various fields. Indium-gallium-zinc oxide (IGZO, In:Ga:Zn = 1:1:1) phototransistors with PbS quantum dots (QDs) have shown promising features for such sensors, such as reasonable mobility, low leakage current, good photosensitivity, and low-cost fabrication. However, the instability of PbS QD/IGZO phototransistors under an air atmosphere and prolonged storage remain serious concerns. In this article, two concepts to improve the reliability of PbS QD/IGZO phototransistors were implemented. P-type doping in the PbS QD layer through oxidation allows increasing the built-in potential between IGZO and PbS QDs, leading to enhancement in photoinduced electron-hole pair creation. Second, agglomeration and fusion of a PbS QDs layer were controlled via thermal annealing, which facilitated the transport of photocreated carriers. The p-type doping and interconnection of a PbS QD layer can be achieved by deposition and subsequent thermal annealing of gallium oxide (Ga2O3) on PbS QD/IGZO stacks. The resulting Ga2O3/PbS QD/IGZO phototransistors exhibited high-performance switching characteristics under dark conditions. Notably, they showed a remarkable photoresponsivity of 196.69 ± 4.05 A/W and a detectivity of (5.47 ± 1.4) × 1012 Jones even at a long-wavelength illumination of 1550 nm. While the unpassivated PbS/IGZO phototransistor suffered serious degradation in optical performance after 2 weeks of storage, the Ga2O3/PbS QD/IGZO phototransistor demonstrated enhanced stability, maintaining high performance for over 5 weeks. These findings suggest that Ga2O3/PbS QD/IGZO phototransistors offer a feasible approach for the fabrication of large-scale active matrix broadband photosensor arrays, potentially revolutionizing optical sensing in various cutting-edge applications.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39056344

RESUMEN

Recent reports on machine learning and machine vision (MV) devices have demonstrated the potential of two-dimensional (2D) materials and devices. Yet, scalable 2D devices are being challenged by contact resistance and Fermi level pinning (FLP), power consumption, and low-cost CMOS compatible lithography processes. To enable CMOS + 2D, it is essential to find a proper lithography strategy that can fulfill these requirements. Here, we explored a modified van der Waals (vdW) deposition lithography and demonstrated a relatively new class of van der Waals field effect transistors (vdW-FETs) based on 2D materials. This lithography strategy enabled us to unlock high-performance devices evident by high current on-off ratio (Ion/Ioff), high turn-on current density (Ion), and weak FLP. We utilized this approach to demonstrate a gate-tunable near-ideal diode using a MoS2/WSe2 heterojunction with an ideality factor of ∼1.65 and current rectification of 102. We finally demonstrated a highly sensitive, scalable, and ultralow power phototransistor using a MoS2/WSe2 vdW-FET for back-end-of-line integration. Our phototransistor exhibited the highest gate-tunable photoresponsivity achieved to date for white light detection with ultralow power dissipation, enabling ultrasensitive optoelectronic applications such as in-sensor MV. Our approach showed the great potential of modified vdW deposition lithography for back-end-of-line CMOS + 2D applications.

6.
Adv Mater ; : e2405874, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924239

RESUMEN

High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in the digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single-device platform are in demand but remain challenging to fabricate. Herein, an AlGaN/GaN-based double-heterostructure is reported, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electron gas (2DEGs). Owing to the programmable feature of the 2DEGs by the combined gate and drain voltage inputs, with a particular capability of electron separation, collection and storage under different light illumination, the phototransistor shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics. A self-powered mode with a responsivity over 100 A W-1 and a photoconductive mode with a responsivity of ≈108 A W-1 are achieved, with the ultimate demonstration of a 10 × 10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage ability. The demonstration of three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units.

7.
ACS Nano ; 18(26): 16905-16913, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904449

RESUMEN

While two-dimensional transition metal dichalcogenides (TMDCs)-based photodetectors offer prospects for high integration density and flexibility, their thinness poses a challenge regarding low light absorption, impacting photodetection sensitivity. Although the integration of TMDCs with metal halide perovskite nanocrystals (PNCs) has been known to be promising for photodetection with a high absorption coefficient of PNCs, the low charge mobility of PNCs delays efficient photocarrier injection into TMDCs. In this study, we integrated MoS2 with in situ formed core/shell PNCs with short ligands that minimize surface defects and enhance photocarrier injection. The PNCs/MoS2 heterostructure efficiently separates electrons and holes by establishing type II band alignment and consequently inducing a photogating effect. The synergistic interplay between photoconductive and photogating effects yields a high responsivity of 2.2 × 106 A/W and a specific detectivity of 9.0 × 1011 Jones. Our findings offer a promising pathway for developing low-cost, high-performance phototransistors leveraging the advantages of two-dimensional (2D) materials.

8.
ACS Nano ; 18(20): 12760-12770, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728257

RESUMEN

Phototransistors are light-sensitive devices featuring a high dynamic range, low-light detection, and mechanisms to adapt to different ambient light conditions. These features are of interest for bioinspired applications such as artificial and restored vision. In this work, we report on a graphene-based phototransistor exploiting the photogating effect that features picowatt- to microwatt-level photodetection, a dynamic range covering six orders of magnitude from 7 to 107 lux, and a responsivity of up to 4.7 × 103 A/W. The proposed device offers the highest dynamic range and lowest optical power detected compared to the state of the art in interfacial photogating and further operates air stably. These results have been achieved by a combination of multiple developments. For example, by optimizing the geometry of our devices with respect to the graphene channel aspect ratio and by introducing a semitransparent top-gate electrode, we report a factor 20-30 improvement in responsivity over unoptimized reference devices. Furthermore, we use a built-in dynamic range compression based on a partial logarithmic optical power dependence in combination with control of responsivity. These features enable adaptation to changing lighting conditions and support high dynamic range operation, similar to what is known in human visual perception. The enhanced performance of our devices therefore holds potential for bioinspired applications, such as retinal implants.

9.
Materials (Basel) ; 17(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38591507

RESUMEN

In this study, we demonstrated the effective separation of charge carriers within the IGZO/IZO heterostructure by incorporating IZO. We have chosen IGZO for its high mobility and excellent on-off switching behavior in the front channel of our oxide-oxide heterostructure. Similarly, for an additional oxide layer, we have selected IZO due to its outstanding electrical properties. The optimized optoelectronic characteristics of the IGZO/IZO phototransistors were identified by adjusting the ratio of In:Zn in the IZO layer. As a result, the most remarkable traits were observed at the ratio of In:Zn = 8:2. Compared to the IGZO single-layer phototransistor, the IGZO/IZO(8:2) phototransistor showed improved photoresponse characteristics, with photosensitivity and photoresponsivity values of 1.00 × 107 and 89.1 AW-1, respectively, under visible light wavelength illumination. Moreover, the electrical characteristics of the IGZO/IZO(8:2) transistor, such as field effect mobility (µsat) and current on/off ratio (Ion/Ioff), were highly enhanced compared to the IGZO transistor. The µsat and Ion/Ioff were increased by about 2.1 times and 2.3 times, respectively, compared to the IGZO transistor. This work provides an approach for fabricating visible-light phototransistors with elevated optoelectronic properties and low power consumption based on an oxide-oxide heterostructure. The phototransistor with improved performance can be applied to applications such as color-selective visible-light image sensors and biometric sensors interacting with human-machine interfaces.

10.
Small ; : e2309499, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624172

RESUMEN

Various semiconductor devices have been developed based on 2D heterojunction materials owing to their distinctive optoelectronic properties. However, to achieve efficient charge transfer at their interface remains a major challenge. Herein, an alloy heterojunction concept is proposed. The sulfur vacancies in ZnIn2S4 are filled with selenium atoms of PdSe2. This chemically bonded heterojunction can significantly enhance the separation of photocarriers, providing notable advantages in the field of photoelectric conversion. As a demonstration, a two-terminal photodetector based on the PdSe2/ZnIn2S4 heterojunction materials is fabricated. The photodetector exhibits stable operation in ambient conditions, showcasing superior performance in terms of large photocurrent, high responsivity (48.8 mA W-1) and detectivity (1.98 × 1011 Jones). To further validate the excellent optoelectronic performance of the heterojunction, a tri-terminal phototransistor is also fabricated. Benefiting from gate voltage modulation, the photocurrent is amplified to milliampere level, and the responsivity is increased to 229.14 mA W-1. These findings collectively demonstrate the significant potential of the chemically bonded PdSe2/ZnIn2S4 alloy heterojunction for future optoelectronic applications.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38657168

RESUMEN

Modulating the electrical properties of two-dimensional (2D) materials is a fundamental prerequisite for their development to advanced electronic and optoelectronic devices. Substitutional doping has been demonstrated as an effective method for tuning the band structure in monolayer 2D materials. Here, we demonstrate a facile selective-area growth of vanadium-doped molybdenum disulfide (V-doped MoS2) flakes via pre-patterned vanadium-metal-assisted chemical vapor deposition (CVD). Optical microscopy characterization revealed the presence of flake arrays. Transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were employed to identify the chemical composition and crystalline structure of as-grown flakes. Electrical measurements indicated a light p-type conduction behavior in monolayer V-doped MoS2. Furthermore, the response time of phototransistors based on V-doped MoS2 monolayers exhibited a remarkable capability of 3 ms, representing approximately 3 orders of magnitude faster response than that observed in pure MoS2 phototransistors. This work hereby provides a feasible approach to doping of 2D materials, promising a scalable pathway for the integration of these materials into emerging electronic and optoelectronic devices.

12.
Nano Lett ; 24(10): 3204-3212, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416569

RESUMEN

The flicker frequency of incident light constitutes a critical determinant in biology. Nevertheless, the exploration of methods to simulate external light stimuli with varying frequencies and develop artificial retinal neurons capable of responsive behavior remains an open question. This study presents an artificial neuron comprising organic phototransistors. The triggering properties of neurons are modulated by optical input, enabling them to execute rudimentary synaptic functions, emulating the biological characteristics of retinal neurons. The artificial retinal neuron exhibits varying responses to incoming light frequencies, allowing it to replicate the persistent visual behavior of the human eye and facilitating image discrimination. Additionally, through seamless integration with circuitry, it can execute motion recognition on a machine cart, preventing collisions with high-speed obstacles. The artificial retinal neuron offers a cost-effective and energy-efficient route for future mobile robot processors.


Asunto(s)
Retina , Visión Ocular , Humanos , Neuronas/fisiología
13.
ACS Appl Mater Interfaces ; 16(9): 11758-11766, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391255

RESUMEN

Phototransistors have gained significant attention in diverse applications such as photodetectors, image sensors, and neuromorphic devices due to their ability to control electrical characteristics through photoresponse. The choice of photoactive materials in phototransistor research significantly impacts its development. In this study, we propose a novel device that emulates artificial synaptic behavior by leveraging the off-current of a phototransistor. We utilize a p-type organic semiconductor, dinaphtho[2,3-b:2',3'- f]thieno[3,2-b]thiophene (DNTT), as the channel material and dope it with the organic semiconductor 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) on the DNTT transistor. Under light illumination, the general DNTT transistor shows no change in off-current, except at 400 nm wavelength, whereas the TPBi-doped DNTT phototransistor exhibits increased off-current across all wavelength bands. Notably, DNTT phototransistors demonstrate broad photoresponse characteristics in the wavelength range of 400-1000 nm. We successfully simulate artificial synaptic behavior by differentiating the level of off-current and achieving a recognition rate of over 70% across all wavelength bands.

14.
Nano Lett ; 23(23): 10821-10831, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38050812

RESUMEN

Anisotropic optoelectronics based on low-symmetry two-dimensional (2D) materials hold immense potential for enabling multidimensional visual perception with improved miniaturization and integration capabilities, which has attracted extensive interest in optical communication, high-gain photoswitching circuits, and polarization imaging fields. However, the reported in-plane anisotropic photocurrent and polarized dichroic ratios are limited, hindering the achievement of high-performance anisotropic optoelectronics. In this study, we introduce novel low-symmetry violet phosphorus (VP) with a unique tubular cross-linked structure into this realm, and the corresponding anisotropic optical and optoelectronic properties are investigated both experimentally and theoretically for the first time. Remarkably, our prepared VP-based van der Waals phototransistor exhibits significant optoelectronic anisotropies with a giant in-plane anisotropic photocurrent ratio exceeding 10 and a comparable polarized dichroic ratio of 2.16, which is superior to those of most reported 2D counterparts. Our findings establish VP as an exceptional candidate for anisotropic optoelectronics, paving the way for future multifunctional applications.

15.
ACS Appl Mater Interfaces ; 15(50): 58673-58682, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38051232

RESUMEN

Organic phototransistors (OPTs) are attracting a significant degree of interest as devices that have the potential to play multiple roles, including light sensing, signal amplification, and switching for addressing when they are used for matrix arrays. However, it has been challenging to realize OPTs that can perform all of these roles simultaneously at a sufficient performance level because the channel materials with high carrier mobility often exhibit relatively low photoabsorption. In this work, we propose OPTs with a hybrid bilayer channel consisting of a neat C60 layer and a bulk-heterojunction layer of C70 and 1,1-bis(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane (TAPC) as a possible solution to this issue. While the C60 layer serves as the main carrier-transporting layer with high mobility, the C70:TAPC layer operates as a photoactive layer wherein the photogenerated carriers provide photoinduced contact modulation that leads to a significant enhancement in photosensitivity. With the optimal design maximizing the absorption, the proposed hybrid-channel OPTs show a responsivity of ca. 180 A/W, which is 4.5 times higher than that of the control OPT with a C70:TAPC single channel. The operation mechanism and the origin for the improvement are verified by an in-depth analysis of the photoinduced modulation of the channel and contact resistances of the OPTs.

16.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139671

RESUMEN

This paper introduces a new design of silicon nanowire (Si NW) phototransistor (PT) arrays conceived explicitly for improved CMOS image sensor performance, and comprehensive numerical investigations clarify the characteristics of the proposed devices. Each unit within this array architecture features a top-layer vertical Si NW optimized for the maximal absorption of incoming light across the visible spectrum. This absorbed light generates carriers, efficiently injected into the emitter-base junction of an underlying npn bipolar junction transistor (BJT). This process induces proficient amplification of the output collector current. By meticulously adjusting the diameters of the NWs, the PTs are tailored to exhibit distinct absorption characteristics, thus delineating the visible spectrum's blue, green, and red regions. This specialization ensures enriched color fidelity, a sought-after trait in imaging devices. Notably, the synergetic combination of the Si NW and the BJT augments the electrical response under illumination, boasting a quantum efficiency exceeding 10. In addition, by refining parameters like the height of the NW and gradient doping depth, the proposed PTs deliver enhanced color purity and amplified output currents.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38032109

RESUMEN

Recent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors. A newly synthesized diketopyrrolopyrrole-based donor-acceptor-type chiral π-conjugated polymer with an asymmetric alkyl side chain exhibits strong chiroptical activity in a wavelength range of 700-1000 nm. We found that the attachment of an enantiomerically pure stereogenic alkyl substituent to the π-conjugated chromophore backbone led to strong chiroptical activity through symmetry breaking of the π-conjugation of the backbone in a molecular rotational motion while maintaining the coplanar backbone conformation for efficient charge transport. The NIR CP light-sensing phototransistors based on a chiral π-conjugated polymer photoactive single channel layer exhibit a high photoresponsivity of 26 A W-1 under NIR CP light irradiation at 920 nm, leading to excellent NIR CP light distinguishability. This study will provide a rationale and strategy for designing chiral π-conjugated polymers for high-performance NIR chiral optoelectronics.

18.
ACS Appl Mater Interfaces ; 15(41): 48442-48451, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788404

RESUMEN

Organic semiconductors herald new opportunities for fabricating high-performance flexible and wearable optoelectronic devices owing to their intrinsic mechanical flexibility, excellent optical absorption, and cool-free operation. The photocurrent generation mechanisms are of multiple physical origins, including photoconductive, photovoltaic, and photogating effects, and the influence of individual effects on the device figures-of-merit is still not well understood. Here we fabricated a high-performance pentacene single-crystal transistor employing graphene electrodes and demonstrated the modulation from the photogating mechanism to the photoconduction effect by controlling gate bias. Control experiments indicate that the calculation based on transfer curves tends to overestimate the responsivity due to nearby trap states. Using a high frequency-modulated light signal to suppress the trapping process, we successfully measured its intrinsic -3 dB bandwidth of 75 kHz. Finally, high-resolution and UV-NIR high-speed imaging capability was demonstrated. Our work provides new guidelines for understanding the photophysical process and intrinsic performances of organic devices and also confirms the potential of organic single crystals in high-speed imaging applications.

19.
Nanotechnology ; 35(2)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37816338

RESUMEN

Phototransistor using 2D semiconductor as the channel material has shown promising potential for high sensitivity photo detection. The high photoresponsivity is often attributed to the photogating effect, where photo excited holes are trapped at the gate dielectric interface that provides additional gate electric field to enhance channel charge carrier density. Gate dielectric material and its deposition processing conditions can have great effect on the interface states. Here, we use HfO2gate dielectric with proper thermal annealing to demonstrate a high photoresponsivity MoS2phototransistor. When HfO2is annealed in H2atmosphere, the photoresponsivity is enhanced by an order of magnitude as compared with that of a phototransistor using HfO2without annealing or annealed in Ar atmosphere. The enhancement is attributed to the hole trapping states introduced at HfO2interface through H2annealing process, which greatly enhances photogating effect. The phototransistor exhibits a very large photoresponsivity of 1.1 × 107A W-1and photogain of 3.3 × 107under low light illumination intensity. This study provides a processing technique to fabricate highly sensitive phototransistor for low optical power detection.

20.
Materials (Basel) ; 16(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569953

RESUMEN

The fabrication of high-performance Organic Phototransistors (OPTs) by depositing Al-islands atop Poly(3-hexylthiophene) (P3HT) thin film coated using the unidirectional floating-film transfer method (UFTM) has been realized. Further, the effect of Al-island thickness on the OPTs' performance has been intensively investigated using X-ray photoelectron spectroscopy, X-ray Diffraction, Atomic force microscopy and UV-Vis spectroscopy analysis. Under the optimized conditions, OPTs' mobility and on-off ratio were found to be 2 × 10-2 cm2 V-1 s-1 and 3 × 104, respectively. Further, the device exhibited high photosensitivity of 105, responsivity of 339 A/W, detectivity of 3 × 1014 Jones, and external quantum efficiency of 7.8 × 103% when illuminated with a 525 nm LED laser (0.3 mW/cm2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA