Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 19(1): 2355739, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38837041

RESUMEN

Previous studies on the kinematics of pea plants' ascent and attach behavior have demonstrated that the signature of their movement varies depending on the kind of support. So far, these studies have been confined to artificial supports (e.g. wooden sticks). Little is known regarding the conditions under which pea plants could rely on biological supports (e.g. neighboring plants) for climbing toward the light. In this study, we capitalize on the 3D kinematic analysis of movement to ascertain whether pea plants scale their kinematics differently depending on whether they aim for artificial or biological support. Results suggest that biological support determines a smoother and more accurate behavior than that elicited by the artificial one. These results shed light on pea plants' ability to detect and classify the properties of objects and implement a movement plan attuned to the very nature of the support. We contend that such differences depend on the augmented multisensory experience elicited by the biological support.


Asunto(s)
Pisum sativum , Pisum sativum/fisiología , Fenómenos Biomecánicos , Movimiento
2.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111821

RESUMEN

Finding a suitable support is a key process in the life history of climbing plants. Those that find a suitable support have greater performance and fitness than those that remain prostrate. Numerous studies on climbing plant behavior have elucidated the mechanistic details of support-searching and attachment. Far fewer studies have addressed the ecological significance of support-searching behavior and the factors that affect it. Among these, the diameter of supports influences their suitability. When the support diameter increases beyond some point, climbing plants are unable to maintain tensional forces and therefore lose attachment to the trellis. Here, we further investigate this issue by placing pea plants (Pisum sativum L.) in the situation of choosing between supports of different diameters while their movement was recorded by means of a three-dimensional motion analysis system. The results indicate that the way pea plants move can vary depending on whether they are presented with one or two potential supports. Furthermore, when presented with a choice between thin and thick supports, the plants showed a distinct preference for the former than the latter. The present findings shed further light on how climbing plants make decisions regarding support-searching and provide evidence that plants adopt one of several alternative plastic responses in a way that optimally corresponds to environmental scenarios.

3.
Plant Methods ; 19(1): 18, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849890

RESUMEN

BACKGROUND: Circumnutation (Darwin et al., Sci Rep 10(1):1-13, 2000) is the side-to-side movement common among growing plant appendages but the purpose of circumnutation is not always clear. Accurately tracking and quantifying circumnutation can help researchers to better study its underlying purpose. RESULTS: In this paper, a deep learning-based model is proposed to track the circumnutating flowering apices in the plant Arabidopsis thaliana from time-lapse videos. By utilizing U-Net to segment the apex, and combining it with the model update mechanism, pre- and post- processing steps, the proposed model significantly improves the tracking time and accuracy over other baseline tracking methods. Additionally, we evaluate the computational complexity of the proposed model and further develop a method to accelerate the inference speed of the model. The fast algorithm can track the apices in real-time on a computer without a dedicated GPU. CONCLUSION: We demonstrate that the accuracy of tracking the flowering apices in the plant Arabidopsis thaliana can be improved with our proposed deep learning-based model in terms of both the racking success rate and the tracking error. We also show that the improvement in the tracking accuracy is statistically significant. The time-lapse video dataset of Arabidopsis is also provided which can be used for future studies on Arabidopsis in various takes.

4.
Plants (Basel) ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36840313

RESUMEN

Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which plants rotate around a central axis during their growth. Numerous studies have elucidated the mechanistic details of circumnutation, but how this phenomenon is controlled during support searching remains unclear. To fill this gap, here we tested whether simulation-based machine learning methods can capture differences in movement patterns nested in actual kinematical data. We compared machine learning classifiers with the aim of generating models that learn to discriminate between circumnutation patterns related to the presence/absence of a support in the environment. Results indicate that there is a difference in the pattern of circumnutation, depending on the presence of a support, that can be learned and classified rather accurately. We also identify distinctive kinematic features at the level of the junction underneath the tendrils that seems to be a superior indicator for discerning the presence/absence of the support by the plant. Overall, machine learning approaches appear to be powerful tools for understanding the movement of plants.

5.
Front Plant Sci ; 13: 982756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330256

RESUMEN

Pine cones show functionally highly resilient, hygroscopically actuated opening and closing movements, which are repeatable and function even in millions of years old, coalified cones. Although the functional morphology and biomechanics behind the individual seed scale motions are well understood, the initial opening of the cone, which is often accompanied by an audible cracking noise, is not. We therefore investigated the initial opening events of mature fresh cones of Scots pine (Pinus sylvestris) and their subsequent motion patterns. Using high-speed and time lapse videography, 3D digital image correlation techniques, force measurements, thermographic and chemical-rheological resin analyses, we are able to draw a holistic picture of the initial opening process involving the rupture of resin seals and very fast seed scale motion in the millisecond regime. The rapid cone opening was not accompanied by immediate seed release in our experiments and, therefore, cannot be assigned to ballistochory. As the involved passive hydraulic-elastic processes in cracking are very fine-tuned, we hypothesize that they are under tight mechanical-structural control to ensure an ecologically optimized seed release upon environmental conditions suitable for wind dispersal. In this context, we propose an interplay of humidity and temperature to be the external "drivers" for the initial cone opening, in which resin works as a crucial chemical-mechanical latch system.

6.
Biol Lett ; 18(10): 20220373, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36285463

RESUMEN

Certain plants exhibit rapid movement in response to mechanical stimulation; however, the ecological functions of this behaviour are largely unknown. Here, we show that the rapid flower closure of Drosera tokaiensis (Droseraceae) in response to mechanical stimulation functions as a physical defence against a specialist herbivore Buckleria paludum (Pterophoridae) caterpillar. Following feeding damage on fruits, flowers, flower stalks and buds by B. paludum, D. tokaiensis closed its flowers nine times faster than during natural circadian closure. The extent of damage to ovules was significantly reduced when the flowers were able to close compared with the condition in which closure was physically inhibited by the application of a resin. Nonetheless, flower closure had no effect on the feeding damage to stamens and styles and promoted further damage to petals. Given that feeding on petals, stamens and styles had no significant effect on the number of mature seeds, rapid flower closure leading to the protection of ovules had an overall positive effect on the reproductive success of D. tokaiensis. Our study showed rapid plant movement as a novel case of induced physical defence against herbivory.


Asunto(s)
Drosera , Drosera/fisiología , Herbivoria , Flores , Plantas , Semillas
7.
Front Plant Sci ; 13: 970320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119615

RESUMEN

The evolutionary roots of carnivory in the Venus flytrap (Dionaea muscipula) stem from a defense response to plant injury caused by, e.g., herbivores. Dionaea muscipula aka. Darwin's most wonderful plant underwent extensive modification of leaves into snap-traps specialized for prey capture. Even the tiny seedlings of the Venus flytrap already produce fully functional, millimeter-sized traps. The trap size increases as the plant matures, enabling capture of larger prey. The movement of snap-traps is very fast (~100-300 ms) and is actuated by a combination of changes in the hydrostatic pressure of the leaf tissue with the release of prestress (embedded energy), triggering a snap-through of the trap lobes. This instability phenomenon is facilitated by the double curvature of the trap lobes. In contrast, trap reopening is a slower process dependent on trap size and morphology, heavily reliant on turgor and/or cell growth. Once a prey item is caught, the trap reconfigures its shape, seals itself off and forms a digestive cavity allowing the plant to release an enzymatic cocktail to draw nutrition from its captive. Interestingly, a failed attempt to capture prey can come at a heavy cost: the trap can break during reopening, thus losing its functionality. In this mini-review, we provide a detailed account of morphological adaptations and biomechanical processes involved in the trap movement during D. muscipula hunting cycle, and discuss possible reasons for and consequences of trap breakage. We also provide a brief introduction to the biological aspects underlying plant motion and their evolutionary background.

8.
Biol Lett ; 18(8): 20220106, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35920027

RESUMEN

Carnivorous pitcher plants capture insects in cup-shaped leaves that function as motionless pitfall traps. Nepenthes gracilis evolved a unique 'springboard' trapping mechanism that exploits the impact energy of falling raindrops to actuate a fast pivoting motion of the canopy-like pitcher lid. We superimposed multiple computed micro-tomography images of the same pitcher to reveal distinct deformation patterns in lid-trapping N. gracilis and closely related pitfall-trapping N. rafflesiana. We found prominent differences between downward and upward lid displacement in N. gracilis only. Downward displacement was characterized by bending in two distinct deformation zones whist upward displacement was accomplished by evenly distributed straightening of the entire upper rear section of the pitcher. This suggests an anisotropic impact response, which may help to maximize initial jerk forces for prey capture, as well as the subsequent damping of the oscillation. Our results point to a key role of pitcher geometry for effective 'springboard' trapping in N. gracilis.


Asunto(s)
Planta Carnívora , Insectos , Animales , Planta Carnívora/anatomía & histología , Planta Carnívora/fisiología , Insectos/fisiología , Hojas de la Planta/fisiología
9.
Adv Sci (Weinh) ; 9(22): e2201362, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35642470

RESUMEN

Fast snapping in the carnivorous Venus flytrap (Dionaea muscipula) involves trap lobe bending and abrupt curvature inversion (snap-buckling), but how do these traps reopen? Here, the trap reopening mechanics in two different D. muscipula clones, producing normal-sized (N traps, max. ≈3 cm in length) and large traps (L traps, max. ≈4.5 cm in length) are investigated. Time-lapse experiments reveal that both N and L traps can reopen by smooth and continuous outward lobe bending, but only L traps can undergo smooth bending followed by a much faster snap-through of the lobes. Additionally, L traps can reopen asynchronously, with one of the lobes moving before the other. This study challenges the current consensus on trap reopening, which describes it as a slow, smooth process driven by hydraulics and cell growth and/or expansion. Based on the results gained via three-dimensional digital image correlation (3D-DIC), morphological and mechanical investigations, the differences in trap reopening are proposed to stem from a combination of size and slenderness of individual traps. This study elucidates trap reopening processes in the (in)famous Dionaea snap traps - unique shape-shifting structures of great interest for plant biomechanics, functional morphology, and applications in biomimetics, i.e., soft robotics.


Asunto(s)
Droseraceae , Fenómenos Biomecánicos , Biomimética , Biofisica , Carnivoría , Droseraceae/anatomía & histología
10.
Plant Methods ; 18(1): 21, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35184723

RESUMEN

BACKGROUND: In recent years, there has been an increase of interest in plant behaviour as represented by growth-driven responses. These are generally classified into nastic (internally driven) and tropic (environmentally driven) movements. Nastic movements include circumnutations, a circular movement of plant organs commonly associated with search and exploration, while tropisms refer to the directed growth of plant organs toward or away from environmental stimuli, such as light and gravity. Tracking these movements is therefore fundamental for the study of plant behaviour. Convolutional neural networks, as used for human and animal pose estimation, offer an interesting avenue for plant tracking. Here we adopted the Social LEAP Estimates Animal Poses (SLEAP) framework for plant tracking. We evaluated it on time-lapse videos of cases spanning a variety of parameters, such as: (i) organ types and imaging angles (e.g., top-view crown leaves vs. side-view shoots and roots), (ii) lighting conditions (full spectrum vs. IR), (iii) plant morphologies and scales (100 µm-scale Arabidopsis seedlings vs. cm-scale sunflowers and beans), and (iv) movement types (circumnutations, tropisms and twining). RESULTS: Overall, we found SLEAP to be accurate in tracking side views of shoots and roots, requiring only a low number of user-labelled frames for training. Top views of plant crowns made up of multiple leaves were found to be more challenging, due to the changing 2D morphology of leaves, and the occlusions of overlapping leaves. This required a larger number of labelled frames, and the choice of labelling "skeleton" had great impact on prediction accuracy, i.e., a more complex skeleton with fewer individuals (tracking individual plants) provided better results than a simpler skeleton with more individuals (tracking individual leaves). CONCLUSIONS: In all, these results suggest SLEAP is a robust and versatile tool for high-throughput automated tracking of plants, presenting a new avenue for research focusing on plant dynamics.

11.
J Exp Bot ; 73(4): 1093-1103, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34727177

RESUMEN

The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.


Asunto(s)
Ritmo Circadiano , Luna , Animales , Conducta Animal , Gravitación , Plantones
12.
Animals (Basel) ; 11(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206479

RESUMEN

In this article we adapt a methodology customarily used to investigate movement in animals to study the movement of plants. The targeted movement is circumnutation, a helical organ movement widespread among plants. It is variable due to a different magnitude of the trajectory (amplitude) exhibited by the organ tip, duration of one cycle (period), circular, elliptical, pendulum-like or irregular shape and the clockwise and counterclockwise direction of rotation. The acquisition setup consists of two cameras used to obtain a stereoscopic vision for each plant. Cameras switch to infrared recording mode for low light level conditions, allowing continuous motion acquisition during the night. A dedicated software enables semi-automatic tracking of key points of the plant and reconstructs the 3D trajectory of each point along the whole movement. Three-dimensional trajectories for different points undergo a specific processing to compute those features suitable to describe circumnutation (e.g., maximum speed, circumnutation center, circumnutation length, etc.). By applying our method to the approach-to-grasp movement exhibited by climbing plants (Pisum sativum L.) it appears clear that the plants scale movement kinematics according to the features of the support in ways that are adaptive, flexible, anticipatory and goal-directed, reminiscent of how animals would act.

13.
Proc Biol Sci ; 288(1951): 20210771, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34036802

RESUMEN

Similar to animals, plants have evolved mechanisms for elastic energy storage and release to power and control rapid motion, yet both groups have been largely studied in isolation. This is exacerbated by the lack of consistent terminology and conceptual frameworks describing elastically powered motion in both groups. Iconic examples of fast movements can be found in carnivorous plants, which have become important models to study biomechanics, developmental processes, evolution and ecology. Trapping structures and processes vary considerably between different carnivorous plant groups. Using snap traps, suction traps and springboard-pitfall traps as examples, we illustrate how traps mix and match various mechanisms to power, trigger and actuate motions that contribute to prey capture, retention and digestion. We highlight a fundamental trade-off between energetic investment and movement control and discuss it in a functional-ecological context.


Asunto(s)
Planta Carnívora , Movimiento , Animales , Fenómenos Biomecánicos , Movimiento (Física) , Plantas
14.
Ann Bot ; 127(6): 765-774, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33608717

RESUMEN

BACKGROUND AND AIMS: In angiosperms, many species disperse their seeds autonomously by rapid movement of the pericarp. The fruits of these species often have long rod- or long plate-shaped pericarps, which are suitable for ejecting seeds during fruit dehiscence by bending or coiling. However, here we show that fruit with a completely different shape can also rely on pericarp movement to disperse seeds explosively, as in Orixa japonica. METHODS: Fruit morphology was observed by hard tissue sectioning, scanning electron microscopy and micro-computed tomography, and the seed dispersal process was analysed using a high-speed camera. Comparisons were made of the geometric characteristics of pericarps before and after fruit dehiscence, and the mechanical process of pericarp movement was simulated with the aid of the finite element model. KEY RESULTS: During fruit dehydration, the water drop-shaped endocarp of O. japonica with sandwich structure produced two-way bending deformation and cracking, and its width increased more than three-fold before opening. Meanwhile the same shaped exocarp with uniform structure could only produce small passive deformation under relatively large external forces. The endocarp forced the exocarp to open by hygroscopic movement before seed launching, and the exocarp provided the acceleration for seed launching through a reaction force. CONCLUSIONS: Two layers of water drop-shaped pericarp in O. japonica form a structure similar to a slingshot, which launches the seed at high speed during fruit dehiscence. The results suggest that plants with explosive seed dispersal appear to have a wide variety of fruit morphology, and through a combination of different external shapes and internal structures, they are able to move rapidly using many sophisticated mechanisms.


Asunto(s)
Sustancias Explosivas , Rutaceae , Dispersión de Semillas , Frutas , Semillas , Agua , Microtomografía por Rayos X
15.
Mov Ecol ; 9(1): 4, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514441

RESUMEN

BACKGROUND: Plant dispersal is a critical factor driving ecological responses to global changes. Knowledge on the mechanisms of dispersal is rapidly advancing, but selective pressures responsible for the evolution of dispersal strategies remain elusive. Recent advances in animal movement ecology identified general strategies that may optimize efficiency in animal searches for food or habitat. Here we explore the potential for evolution of similar general movement strategies for plants. METHODS: We propose that seed dispersal in plants can be viewed as a strategic search for suitable habitat, where the probability of finding such locations has been optimized through evolution of appropriate dispersal kernels. Using model simulations, we demonstrate how dispersal strategies can optimize key dispersal trade-offs between finding habitat, avoiding kin competition, and colonizing new patches. These trade-offs depend strongly on the landscape, resulting in a tight link between optimal dispersal strategy and spatiotemporal habitat distribution. RESULTS: Our findings reveal that multi-scale seed dispersal strategies that combine a broad range of dispersal scales, including Lévy-like dispersal, are optimal across a wide range of dynamic and patchy landscapes. At the extremes, static and patchy landscapes select for dispersal strategies dominated by short distances, while uniform and highly unpredictable landscapes both select for dispersal strategies dominated by long distances. CONCLUSIONS: By viewing plant seed dispersal as a strategic search for suitable habitat, we provide a reference framework for the analysis of plant dispersal data. Consideration of the entire dispersal kernel, including distances across the full range of scales, is key. This reference framework helps identify plant species' dispersal strategies, the evolutionary forces determining these strategies and their ecological consequences, such as a potential mismatch between plant dispersal strategy and altered spatiotemporal habitat dynamics due to land use change. Our perspective opens up directions for future studies, including exploration of composite search behaviour and 'informed searches' in plant species with directed dispersal.

16.
Ann Bot ; 126(6): 1099-1107, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32780092

RESUMEN

BACKGROUND AND AIMS: The endangered aquatic carnivorous waterwheel plant (Aldrovanda vesiculosa) catches prey with 3-5-mm-long underwater snap-traps. Trapping lasts 10-20 ms, which is 10-fold faster than in its famous sister, the terrestrial Venus flytrap (Dionaea muscipula). After successful capture, the trap narrows further and forms a 'stomach' for the digestion of prey, the so-called 'sickle-shaped cavity'. To date, knowledge is very scarce regarding the deformation process during narrowing and consequent functional morphology of the trap. METHODS: We performed comparative analyses of virtual 3D histology using computed tomography (CT) and conventional 2D histology. For 3D histology we established a contrasting agent-based preparation protocol tailored for delicate underwater plant tissues. KEY RESULTS: Our analyses reveal new structural insights into the adaptive architecture of the complex A. vesiculosa snap-trap. In particular, we discuss in detail the arrangement of sensitive trigger hairs inside the trap and present actual 3D representations of traps with prey. In addition, we provide trap volume calculations at different narrowing stages. Furthermore, the motile zone close to the trap midrib, which is thought to promote not only the fast trap closure by hydraulics but also the subsequent trap narrowing and trap reopening, is described and discussed for the first time in its entirety. CONCLUSIONS: Our research contributes to the understanding of a complex, fast and reversible underwater plant movement and supplements preparation protocols for CT analyses of other non-lignified and sensitive plant structures.


Asunto(s)
Droseraceae , Imagenología Tridimensional , Carnivoría , Movimiento
17.
J Exp Bot ; 71(20): 6408-6417, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32816036

RESUMEN

The rachis of most growing compound leaves observed in nature exhibits a stereotypical hook shape. In this study, we focus on the canonical case of Averrhoa carambola. Combining kinematics and mechanical investigation, we characterize this hook shape and shed light on its establishment and maintenance. We show quantitatively that the hook shape is a conserved bent zone propagating at constant velocity and constant distance from the apex throughout development. A simple mechanical test reveals non-zero intrinsic curvature profiles for the rachis during its growth, indicating that the hook shape is actively regulated. We show a robust spatial organization of growth, curvature, rigidity, and lignification, and their interplay. Regulatory processes appear to be specifically localized: in particular, differential growth occurs where the elongation rate drops. Finally, impairing the graviception of the leaf on a clinostat led to reduced hook curvature but not to its loss. Altogether, our results suggest a role for proprioception in the regulation of the leaf hook shape, likely mediated via mechanical strain.


Asunto(s)
Hojas de la Planta , Fenómenos Biomecánicos , Morfogénesis
18.
Front Plant Sci ; 11: 984, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695135

RESUMEN

The goal of the study was to quantify and identify patterns in circadian movements of small-leaved lime (Tillia cordata) saplings with the help of terrestrial laser scanning (TLS). The movements were monitored every 60 min 24 h a day and every 30 min in the hour of sunrise and sunset. In order to exclude wind effects the monitored saplings were indoors. The resulting point clouds were used in creating a time series of branch and foliage movements with high precision. The circadian vertical movement of saplings was evaluated through target points, which has a potential of capturing the point-wise movement more accurately. Our results clearly show that small saplings move their branches and leaves during 24 h in complex ways and that is difficult to identify general patterns. Since we worked with small saplings and our movement threshold was 5 mm, we detected random fluctuation-oscillation as the most common movement in monitored saplings. The results highlight the potential of TLS measurements in support of chronobiology and the possibilities to analyze circadian movements of saplings in controlled environment.

19.
Proc Natl Acad Sci U S A ; 117(27): 16035-16042, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571929

RESUMEN

The mechanical principles for fast snapping in the iconic Venus flytrap are not yet fully understood. In this study, we obtained time-resolved strain distributions via three-dimensional digital image correlation (DIC) for the outer and inner trap-lobe surfaces throughout the closing motion. In combination with finite element models, the various possible contributions of the trap tissue layers were investigated with respect to the trap's movement behavior and the amount of strain required for snapping. Supported by in vivo experiments, we show that full trap turgescence is a mechanical-physiological prerequisite for successful (fast and geometrically correct) snapping, driven by differential tissue changes (swelling, shrinking, or no contribution). These are probably the result of the previous accumulation of internal hydrostatic pressure (prestress), which is released after trap triggering. Our research leads to an in-depth mechanical understanding of a complex plant movement incorporating various actuation principles.


Asunto(s)
Droseraceae/fisiología , Movimiento/fisiología , Hojas de la Planta/fisiología , Fenómenos Biomecánicos , Simulación por Computador , Modelos Biológicos , Movimiento (Física) , Factores de Tiempo , Grabación en Video
20.
Plant J ; 103(1): 308-322, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32130751

RESUMEN

Circadian organ movements are ubiquitous in plants. These rhythmic outputs are thought to be regulated by the circadian clock and auxin signalling, but the underlying mechanisms have not been clarified. Flowers of Nicotiana attenuata change their orientation during the daytime through a 140° arc to balance the need for pollinators and the protection of their reproductive organs. This rhythmic trait is under the control of the circadian clock and results from bending and re-straightening movements of the pedicel, stems that connect flowers to the inflorescence. Using an explant system that allowed pedicel growth and curvature responses to be characterized with high spatial and temporal resolution, we demonstrated that this movement is organ autonomous and mediated by auxin. Changes in the growth curvature of the pedicel are accompanied by an auxin gradient and dorsiventral asymmetry in auxin-dependent transcriptional responses; application of auxin transport inhibitors influenced the normal movements of this organ. Silencing the expression of the circadian clock component ZEITLUPE (ZTL) arrested changes in the growth curvature of the pedicel and altered auxin signalling and responses. IAA19-like, an Aux/IAA transcriptional repressor that is circadian regulated and differentially expressed between opposite tissues of the pedicel, and therefore possibly involved in the regulation of changes in organ curvature, physically interacted with ZTL. Together, these results are consistent with a direct link between the circadian clock and the auxin signalling pathway in the regulation of this rhythmic floral movement.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Flores/fisiología , Nicotiana/fisiología , Proteínas de Plantas/fisiología , Ritmo Circadiano/fisiología , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA