RESUMEN
Widely documented in animals, behavioural thermoregulation mitigates negative impacts of climate change. Plants experience especially strong thermal variability but evidence for plant behavioural thermoregulation is limited. Along a montane elevation gradient, Argentina anserina flowers warm more in alpine populations than at lower elevation. We linked floral temperature with phenotypes to identify warming mechanisms and documented petal movement and pollinator visitation using time-lapse cameras. High elevation flowers were more cupped, focused light deeper within flowers and were more responsive to air temperature than low; cupping when cold and flattening when warm. At high elevation, a 20° increase in petal angle resulted in a 0.46°C increase in warming. Warming increased pollinator visitation, especially under cooler high elevation temperatures. A plasticity study revealed constitutive elevational differences in petal cupping and stronger temperature-induced floral plasticity in high elevation populations. Thus, plant populations have evolved different behavioural responses to temperature driving differences in thermoregulatory capacity.
Asunto(s)
Flores , Polinización , Flores/fisiología , Argentina , Animales , Temperatura , Altitud , Cambio Climático , Regulación de la Temperatura Corporal/fisiologíaRESUMEN
Resupination refers to the developmental orientation changes of flowers through ≈180º, leaving them effectively upside-down. It is a widespread trait present in 14 angiosperm families, including the Orchidaceae, where it is a gravitropic phenomenon actively controlled by auxins. Here, we demonstrate that the passive gravitational pull on flower parts can have an additional influence on resupination. We studied a lady's slipper orchid in which some flowers naturally fail to resupinate. We conducted a manipulative experiment removing floral parts and showed that both the probability of complete resupination and the degree of flower vertical movement (from 0º - 180º) are related to the mass of floral organs. During flower development, the tip of the ovary slightly curves actively (14.75º) due to gravitropism. This promotes a lever arm effect so that the gravitational pull acting on flower mass creates a torque that bends the ovary, orienting the flower into a resupinate position that is accessible to pollinators. The role of the mass of floral organs in resupination provides new insights into flower development and its role in pollination mechanisms.
RESUMEN
Orchids offer a variety of floral rewards to pollinators. In many orchid groups, however, the transfer of pollen is based on food-deception, as in the case of Laelia (including Schomburgkia s.s.), a genus assigned to the Neotropical subtribe Laeliinae. Here, we report on the reproductive biology of a Brazilian member of this subtribe, namely, Laelia gloriosa, occurring in the forested areas of southeastern Brazil. The study includes analyses of floral morphology, histochemistry, and the chemical analysis of floral rewards and scents. Pollinators and pollination mechanism data were collected in the field by means of focal observations. Analyses of breeding systems and the percentage of potentially viable seed were also recorded. The floral morphology of Laelia gloriosa indicates that this species is melittophilous. The flowers release a citrus-like fragrance that attracts many species of bee. The flowers offer waxy material as a reward, and this is collected exclusively by Meliponini bees. Several bee species visit the flowers. However, those of L. gloriosa are pollinated exclusively by Trigona spinipes. Pollinaria are deposited on the bee's scutellum. Plants of the studied population were entirely self-compatible, but pollinator-dependent. The frequency of visits to these flowers was greater than in rewardless Laeliinae. Our study provides the first evidence of lipoidal substances as a resource in Laeliinae. The discovery that an orchid species (Laelia gloriosa) of this subtribe, hitherto considered to be entirely pollinated by nectar-seeking pollinators, offers a floral waxy material and provides new insights into the evolution of this important subtribe.
Asunto(s)
Flores , Orchidaceae , Néctar de las Plantas , Polinización , Orchidaceae/fisiología , Orchidaceae/anatomía & histología , Polinización/fisiología , Flores/fisiología , Flores/anatomía & histología , Animales , Abejas/fisiología , BrasilRESUMEN
Species traits greatly influence interactions between plants and pollinators where floral nectar is the primary energy source fostering this mutualism. However, very little is known about how nectar traits mediate interactions in pollination networks compared with morphological traits. Here, we evaluated the role of morphological and nectar traits in shaping plant-hummingbird interaction networks along an elevation gradient. For this, we assessed patterns in floral phenotypic traits and network properties of plant species across elevations in Costa Rica. We also analysed whether plant species with generalized flower traits are ecological generalists and how morphological trait matching versus nectar traits affect interactions. We found marked variation in floral phenotypic traits and flower abundance of hummingbird-visited plant species across 10 sites along the elevation gradient. We did not find evidence for a relationship between flower morphology and nectar traits or between morphological and ecological generalization of plant species. Plant-hummingbird interaction frequency increased when the lengths of hummingbird bill and flower corolla were similar, indicating morphological matching, whereas nectar traits were unrelated to interactions. While nectar may play a difficult-to-detect secondary role within plant-hummingbird networks, our results reinforce the idea that morphological matching is an important factor in structuring ecological communities.
Asunto(s)
Aves , Flores , Néctar de las Plantas , Polinización , Aves/fisiología , Aves/anatomía & histología , Flores/anatomía & histología , Flores/fisiología , Costa Rica , Animales , Altitud , FenotipoRESUMEN
Animal pollination is crucial for the reproduction and economic viability of a wide range of crops. Despite the existing data, the extent to which citrus crops depend on pollinators to guarantee fruit production still needs to be determined. Here, we described the composition of potential pollinators in citrus (Citrus spp.) from the main growing areas of Argentina; moreover, we combined Bayesian models and empirical simulations to assess the contribution of animal pollination on fruit set and yield ha-1 in different species and cultivars of lemons, grapefruits, mandarins, and oranges. Honeybee (A. mellifera L.) was the most commonly observed potential pollinator, followed by a diverse group of insects, mainly native bees. Regardless of citrus species and cultivars, the probability of flowers setting fruit in pollinated flowers was 2.4 times higher than unpollinated flowers. Furthermore, our simulations showed that about 60% of the citrus yield ha-1 can be attributable to animal pollination across all species and cultivars. Therefore, it is crucial to maintain environments that support pollinator diversity and increase consumer and to producer awareness and demand in order to ensure the significant benefits of animal pollination in citrus production.
Asunto(s)
Citrus , Flores , Polinización , Polinización/fisiología , Animales , Flores/crecimiento & desarrollo , Abejas/fisiología , Frutas , Argentina , Teorema de Bayes , Productos Agrícolas/crecimiento & desarrolloRESUMEN
The diversification of angiosperms has largely been attributed to adaptive radiation of their pollination and mating systems, which are relevant drivers of the macroevolution processes. The fig (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) interaction is an example of obligate mutualism. Passive and active pollination modes have been associated with morphological traits in both partners. However, more information is required to assess the relationship between floral traits and pollination modes, particularly in Neotropical Ficus species. This study evaluates the morphological traits of figs and fig wasps regarding pollination modes in species belonging to Neotropical Ficus sections (three species each of Americanae and Pharmacosycea). Pollination mode was identified by floral morphology, anther/ovule ratio, and specialized structures fig wasps use for pollen transport (pollen pocket and coxal combs). Fig species in sect. Americanae are actively pollinated because pistillate flowers form a synstigma, present anther/ovule ratios <0.11, and their pollinator Pegoscapus fig wasps have pollen pockets and coxal combs. In contrast, species in sect. Pharmacosycea have free pistillate flowers, with anther/ovule ratios >0.27; they are pollinated by Tetrapus wasps, which lack specialized structures to carry pollen. Each species of Ficus was associated with a single morphospecies of fig wasp. The results support previous contributions that consider reciprocal morphological traits between fig species and their pollinating wasps as evidence of a close co-evolutionary history.
RESUMEN
Worldwide, both cultivated and wild plants are pollinated by the honey bee, Apis mellifera. Bee numbers are declining as a result of a variety of factors, including increased pesticide use. Cyflumetofen controls pest mites in some plantations pollinated by bees, which may be contaminated with residual sublethal concentrations of this pesticide, in nectar and pollen. We evaluated the effects of a sublethal concentration of a cyflumetofen formulation on the midgut, hypopharyngeal gland, and fat body of A. mellifera workers orally exposed for 72 h or 10 days. The midgut epithelium of treated bees presented digestive cells with cytoplasm vacuoles and some cell fragmentation, indicating autophagy and cell death. After being exposed to the cyflumetofen formulation for 72 h, the midgut showed a higher injury rate than the control bees, but after 10 days, the organs had recovered. In the hypopharyngeal gland of treated bees, the end apparatus was filled with secretion, suggesting that the acaricide interferes with the secretory regulation of this gland. Histochemical tests revealed differences in the treated bees in both exposure periods in the midgut and hypopharyngeal glands. The acaricide caused cytotoxic effects on the midgut digestive cells, with apical protrusions, plasma membrane rupture, and several vacuoles in the cytoplasm, features of cell degeneration. In the hypopharyngeal glands of the treated bees, the secretory cells presented small electron-dense and large electron-lucent secretory granules. The fat body cells had no changes in comparison with the control bees. In conclusion, the cyflumetofen formulation at sublethal concentrations causes damage to the midgut and the hypopharyngeal glands of honey bee, which may compromise the functions of these organs and colony fitness. Environ Toxicol Chem 2024;43:2455-2465. © 2024 SETAC.
Asunto(s)
Cuerpo Adiposo , Animales , Abejas/efectos de los fármacos , Cuerpo Adiposo/efectos de los fármacos , Acaricidas/toxicidad , Sistema Digestivo/efectos de los fármacosRESUMEN
Reproductive isolation is one of the mechanisms of speciation. The two currently accepted subspecies of Parodia haselbergii (P. haselbergii subsp. haselbergii and P. haselbergii subsp. graessneri) were studied regarding flower traits, phenology, breeding systems and pollination. In addition, a principal component analysis with 18 floral characters and germination tests under controlled conditions were performed for both taxa. Pollination was studied in the field, in two localities of Southern Brazil. Pollinators were recorded through photos and film. Breeding system experiments were performed by applying controlled pollinations to plants excluded from pollinators. Both taxa mostly differ in asynchronous flowering periods, floral traits (including floral part measurements and nectar concentration) and pollinators. The flowers of both subspecies are functionally protogynous and perform remarkably long lifespans (≥ 15 days), both traits being novelties for Cactaceae. Whereas the reddish flowers of P. haselbergii subsp. haselbergii (nectar concentration: ca. 18%) are pollinated by hummingbirds of Thalurania glaucopis, the greenish flowers of P. haselbergii subsp. graessneri (nectar concentration: ca. 29%) are pollinated by Augochlora bees (Halictidae). Both subspecies are self-compatible, yet pollinator-dependent. The principal component analysis evidenced that both subspecies are separated, regarding flower traits. The seeds of both subspecies performed differently in the germination tests, but the best results were recovered at 20 °C and germination considerably decreased around 30 °C. In conclusion, all these results support that both taxa are in reproductive isolation, and can be treated as different species.
Asunto(s)
Cactaceae , Flores , Polinización , Flores/fisiología , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Polinización/fisiología , Cactaceae/fisiología , Brasil , Animales , Germinación/fisiología , Aislamiento Reproductivo , Reproducción/fisiología , Especificidad de la Especie , Análisis de Componente Principal , Néctar de las Plantas , Aves/fisiologíaRESUMEN
Understanding the ecological and evolutionary aspects of mutualistic interactions is essential for predicting species responses to environmental changes. This study aimed to investigate the phenological patterns and reproductive strategies in two closely related fig tree species, Ficus citrifolia and Ficus eximia. We monitored 99 F. citrifolia and 21 F. eximia trees weekly from January 2006 to April 2011 in an area close to the southern edge of the tropical region in Brazil. Our results revealed contrasting phenological patterns between the two species, with F. citrifolia displaying an annual flowering pattern (1.4 episodes per tree per year) and F. eximia a supra-annual pattern (0.5 episodes per tree per year). We also found significant differences in reproductive strategies, with F. eximia producing more pistillate flowers and, consequently, more seeds and pollinating wasps per fig than F. citrifolia, likely as an adaptation to overcome limitations of low population density by maximizing the gene flow. As the shorter-lived organism, the fig wasp was found to influence critical processes associated with the success and stability of mutualism, such as fig development and ripening. Our findings emphasize the importance of understanding the intricate interactions between mutualistic partners and their adaptive responses to environmental conditions in shaping fig tree populations' reproductive strategies and genetic structure.
RESUMEN
PREMISE: Under pollinator limitations, specialized pollination syndromes may evolve toward contrasting responses: a generalized syndrome with increased pollinator attraction, pollinator reward, and pollen transfer capacity; or the selfing syndrome with increased self-pollen deposition, but reduced pollinator attraction and pollen transfer capacity. The buzz-pollination syndrome is specialized to explore female vibrating bees as pollinators. However, vibrating bees become less-active pollinators at montane areas of the Atlantic Forest (AF) domain. This study investigated whether the specialized buzz-pollination syndrome would evolve toward an alternative floral syndrome in montane areas of the AF domain, considering a generalized and the selfing syndromes as alternative responses. METHODS: We utilized a lineage within the buzz-pollinated Miconia as study system, contrasting floral traits between montane AF-endemic and non-endemic species. We measured and validated floral traits that were proxies for pollinator attraction, reward access, pollen transfer capacity, and self-pollen deposition. We inferred the evolution of floral trait via phylogenetic comparative methods. RESULTS: AF-endemic species have selectively evolved greater reward access and more frequently had generalist pollination. Nonetheless, AF-endemic species also have selectively evolved toward lower pollen transfer capacity and greater self pollination. These patterns indicated a complex evolutionary process that has jointly favored a generalized and the selfing syndromes. CONCLUSIONS: The buzz pollination syndrome can undergo an evolutionary disruption in montane areas of the AF domain. This floral syndrome is likely more labile than often assumed, allowing buzz-pollinated plants to reproduce in environments where vibrating bees are less-reliable pollinators.
Asunto(s)
Evolución Biológica , Flores , Polinización , Animales , Abejas/fisiología , Flores/fisiología , Filogenia , Polen/fisiologíaRESUMEN
The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.
Asunto(s)
Magnoliopsida , Néctar de las Plantas , Polinización , Néctar de las Plantas/metabolismo , Polinización/fisiología , Magnoliopsida/fisiología , Animales , Altitud , Flores/fisiología , Clima , GeografíaRESUMEN
Heteranthery, the presence of different types of anthers on the same flower, is a floral adaptation that aims to balance the need for pollinators to collect pollen as a food resource while ensuring sufficient pollen for pollination. We investigate the role of heteranthery in the pollination of Senna arnottiana flowers and how it is affected by the behaviour of visiting bee species, with a particular focus on the impact of the invasive bumblebee Bombus terrestris. In three populations of S. arnottiana we measured the size of three sets of anthers and style, stigma-anther separation, pollen quantity and fruit set, and contrasted it with the body size, behaviour, and pollination effectiveness of all floral visitors. Different bee species visited S. arnottiana flowers, and their foraging behaviour varied. Large-bodied native bees, including Centris cineraria, Caupolicana sp. and Cadeguala occidentalis, preferentially visited short anthers, whereas B. terrestris, an exotic bumblebee, foraged from both short and long anthers without distinction. In addition, B. terrestris contacted the stigma at a lower rate than large-bodied native bees. Instead of concentrating its pollen-gathering efforts on the feeding anthers, as predicted by the "division of labor" hypothesis, B. terrestris indiscriminately visited both types of anthers similarly. This behaviour of B. terrestris may disrupt the adaptive significance of heteranthery by mixing the roles of pollination and feeding anthers of S. arnottiana. Therefore, our results highlight the potential disruption of this relationship by exotic pollinators and the need to consider it in conservation efforts.
Asunto(s)
Flores , Especies Introducidas , Polinización , Senna , Animales , Abejas/fisiología , Polinización/fisiología , Flores/fisiología , Senna/fisiología , Polen/fisiología , Conducta Alimentaria/fisiologíaRESUMEN
BACKGROUND AND AIMS: The majority of the earth's land area is currently occupied by humans. Measuring how terrestrial plants reproduce in these pervasive environments is essential for understanding their long-term viability and their ability to adapt to changing environments. METHODS: We conducted hierarchical and phylogenetically-independent meta-analyses to assess the overall effects of anthropogenic land-use changes on pollination, and male and female fitness in terrestrial plants. KEY RESULTS: We found negative global effects of land use change (i.e., mainly habitat loss and fragmentation) on pollination and on female and male fitness of terrestrial flowering plants. Negative effects were stronger in plants with self-incompatibility (SI) systems and pollinated by invertebrates, regardless of life form and sexual expression. Pollination and female fitness of pollination generalist and specialist plants were similarly negatively affected by land-use change, whereas male fitness of specialist plants showed no effects. CONCLUSIONS: Our findings indicate that angiosperm populations remaining in fragmented habitats negatively affect pollination, and female and male fitness, which will likely decrease the recruitment, survival, and long-term viability of plant populations remaining in fragmented landscapes. We underline the main current gaps of knowledge for future research agendas and call out not only for a decrease in the current rates of land-use changes across the world but also to embark on active restoration efforts to increase the area and connectivity of remaining natural habitats.
RESUMEN
Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g. during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. In this study, we conducted the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focused on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.
Asunto(s)
Vibración , Animales , Abejas/fisiología , Fenómenos Biomecánicos , Tamaño Corporal , Polinización/fisiología , México , Australia , Escocia , Comunicación AnimalRESUMEN
In specialized plant-pollinator associations, partners may exhibit adaptive traits, which favor the maintenance of the interaction. The association between Calibrachoa elegans (Solanaceae) and its oligolectic bee pollinator, Hexantheda missionica (Colletidae), is mutualistic and forms a narrowly specialized pollination system. Flowers of C. elegans are pollinated exclusively by this bee species, and the bees restrict their pollen resources to this plant species. The pollen presentation schedules of C. elegans were evaluated at the population level to test the hypothesis that H. missionica females adjust their foraging behavior to the resource offering regime of C. elegans plants. For this, the number of new flowers and anthers opened per hour (as a proxy for pollen offering) was determined, and pollen advertisement was correlated with the frequency of flower visits during the day. Preferences of female bees for flowers of different stages were also investigated, and their efficiency as pollinators was evaluated. Pollen offering by C. elegans was found to be partitioned throughout the day through scattered flower openings. Females of H. missionica indeed adjusted their foraging activity to the most profitable periods of pollen availability. The females preferred new, pollen-rich flowers over old ones and gathered pollen and nectar selectively according to flower age. Such behaviors must optimize female bee foraging efficiency on flowers. Female bees set 93% of fruit after a single visit. These findings guarantee their importance as pollinators and the persistence of the specialized plant-pollinator association.
Asunto(s)
Conducta Alimentaria , Flores , Polinización , Solanaceae , Animales , Abejas/fisiología , Flores/fisiología , Polinización/fisiología , Femenino , Conducta Alimentaria/fisiología , Solanaceae/fisiología , Polen/fisiologíaRESUMEN
Hybrid zones provide natural experimental settings to test hypotheses about species divergence. We concentrated on a hybrid swarm in which oil-collecting bees and flower-pecking birds act as pollinators of two Calceolaria species. We asked whether both pollinators contributed to flower divergence by differentially promoting prezygotic fitness at the phenotypic extremes that represent parentals. We studied pollinator-mediated selection on phenotypic traits critical in plant-pollinator mechanical interaction, namely plant height, reward-to-stigma distance, and flower shape. We utilised the quantity and quality of pollen deposited as fitness measures and distinguished between the contribution of the two pollinator types. Results showed uni- and bivariate disruptive selection for most traits through pollen grains deposited by both pollinators. Bird-mediated fitness favoured low plants with a long reward-to-stigma distance and a straight corolla, while bee-mediated fitness favoured tall plants with a short reward-to-stigma distance and curved corolla. In addition, stabilising selection at one end of the phenotypic range showed a bird-mediated reproductive asymmetry within the swarm. The disruptive pattern was countered, albeit weakly, by hybrids receiving higher-quality pollen on the stigmas. Results suggest that pollinator-mediated selection promotes divergence of integrated flower phenotypes mechanically adjusted either to bees or birds underscoring the importance of pollinator specialisation in diversification.
Asunto(s)
Flores , Aptitud Genética , Fenotipo , Polinización , Selección Genética , Polinización/fisiología , Animales , Abejas/fisiología , Flores/fisiología , Flores/anatomía & histología , Aves/fisiología , Polen/fisiología , Hibridación Genética , Especificidad de la EspecieRESUMEN
The use of Meliponini for crop pollination in protected environments is practically non-existent. One of the reasons is the difficulty of acclimatizing Meliponini to the temperature and light conditions inside greenhouses. We investigated how covering materials used in greenhouses, which filter different intensities of ultraviolet (UV) light, affect the foraging behaviors, flight orientation, attraction to walls and ceilings, and mortality of Scaptotrigona cf. postica (Letreille), Frieseomelitta varia (Lepeletier), and Melipona quadrifasciata (Lepeletier). The experiments were conducted in 5.3 m3 arenas covered with four types of plastic films that do not polarize sunlight, with UV transmittance levels ranging from 0.1 to 54%, compared to a transparent glass control. The temperature inside the arenas varied between treatments, from 27 ± 3°C to 31 ± 2°C. All three species collected resources and returned to the colony, regardless of the covering material. However, the proportion of this behavior, the number of bees attracted to the ceiling and wall, and mortality varied among treatments and/or throughout the confinement days for each species. Melipona quadrifasciata and F. varia acclimatized better to the confined environments than S. cf. postica and showed consistent resource collection behavior throughout the confinement days in all tested materials, except for the one that filtered around 90% of UV. In all three species, the mortality gradually decreased throughout the confinement days. The results indicate that the choice of covering material, considering its optical characteristics, can be crucial to ensure greater effectiveness of the pollination services provided by stingless bees in protected systems.
Asunto(s)
Aclimatación , Rayos Ultravioleta , Abejas/fisiología , Animales , Brasil , Temperatura , Polinización , Conducta Alimentaria , Vuelo AnimalRESUMEN
The mason bee Osmia excavata Alfken is an apple pollinating insect widely distributed in northern China, in order to effectively utilize the mason bee and improve the pollination rate of apples, there is a need to evaluate the pollination efficiency of the bees. This study evaluated the pollination efficiency of the mason bee on apple orchards in Jinan and Yantai, Shandong Province, China. The study compared natural pollination areas and pollination areas with different release densities of O. excavata in terms of the effects of bee density, timing of pollination, and distance effects on fruit set rate, fruit shape index, fruit shape skewness, fruit soluble solids content, and fruit firmness. The optimal release density of bees was 6000 cocoons per hectare, resulting in the highest fruit setting rate of apple lateral flowers. From 07:00 to 14:00 was the best time for bee pollination. The optimal distance of hives from apple trees for pollination by O. excavata was 60 m. Single fruit weight was significantly higher and fruit unsymmetrical rate, partial slope and hardness were all significantly lower at the release densities of 6000 or 12000 cocoons per hectare compared with 3000 cocoons per hectare or under natural pollination conditions. There was no significant difference in the content of soluble solids under different release densities. Thus, the radius of 60 m from the hive was the effective pollination range and 6000 cocoons per hectare of mason bees could ensure the fruit quality of apple.
Asunto(s)
Frutas , Malus , Polinización , Animales , Abejas/fisiología , China , FloresRESUMEN
Introduction: Scaevola taccada and Scaevola plumieri co-occur on shorelines of the Caribbean. Scaevola taccada is introduced in this habitat and directly competes with native dune vegetation, including S. plumieri, a species listed as locally endangered and threatened in Caribbean locations. This study addresses whether the invasive S. taccada also impacts the native S. plumieri indirectly by competing for pollinators and represents the first comparative study of insect visitation between these species. Methods: Insect visitation rates were measured at sites where species co-occur and where only the native occurs. Where species cooccur, insect visitors were captured, identified and analyzed for the pollen they carry. Pollen found on open-pollinated flowers was analyzed to assess pollen movement between the two species. We also compared floral nectar from each species by measuring volume, sugar content, and presence and proportions of amine group containing constituents (AGCCs). Results: Our results demonstrate that both species share insect visitors providing the context for possible pollinator competition, yet significant differences in visitation frequency were not found. We found evidence of asymmetrical heterospecific pollen deposition in the native species, suggesting a possible reproductive impact. Insect visitation rates for the native were not significantly different between invaded and uninvaded sites, suggesting that the invasive S. taccada does not limit pollinator visits to S. plumieri. Comparisons of nectar rewards from the invasive and the native reveal similar volumes and sugar concentrations, but significant differences in some amine group containing constituents that may enhance pollinator attraction. Conclusion: Our analysis finds no evidence for pollination competition and therefore S. taccada's main impacts on S. plumieri are through competitive displacement and possibly through reproductive impacts as a consequence of heterospecific pollen deposition.
RESUMEN
Crop-pollinator interactions are essential for world food security. Studying crop pollination from a network approach allows identification of target pollinators for conservation and management, and gaps in our knowledge. Solanaceae represents the third highest ranked family based on economic value, and its production is highly improved by animal pollination. This study aimed to integrate global data on solanaceous crop pollination and analyse the interaction patterns using a meta-network approach. Our questions were: (i) how are interactions structured and what are the structuring roles of species; and (ii) what are the main gaps in our knowledge? Data were obtained through a systematic review of the main scientific databases. The network structure was described using connectivity and modularity calculations, and the role of species using centrality metrics. The 251 pollinator species reported were in seven orders, mainly Hymenoptera (84.9%). The generalists Bombus and Apis species were the most common pollinators. The meta-network was modular, and all modules mostly included bees. Most species were peripherals, around 12% were connectors, and there were no module hubs. Apis mellifera was the only network hub (supergeneralist). The most important pollinators are the most managed pollinators worldwide; however, many native species play a role in structuring the meta-network. Main gaps include species of importance to pepper pollination, lack of species-specific identification, and the need for more robust experimental studies evaluating the pollination efficiency of native, manageable bees.