Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.529
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39361433

RESUMEN

Toward commercialization of carbon-based perovskite solar cells (C-PSCs), it is crucial to innovatively design inorganic hole transport layer materials that excel in extracting and transporting charge carriers to promote their photoelectric conversion efficiency (PCE). In this work, a novel and high-connectivity CuBi2O4-polyaniline nanofibrous (CuBi2O4-PN) reticular structure is created by integrating CuBi2O4 hierarchical microspheres (CuBi2O4 MS) with polyaniline nanofibrous. The introduction of CuBi2O4-PN as a hole transport layer (HTL) notably enhances the contact quality of the devices and substantially reduces the surface defects of C-PSCs. In a comparative analysis under identical experimental conditions, MAPbI3 devices incorporating CuBi2O4-PN HTL demonstrated a PCE of 14.79%, achieving a 44.3% increase over the reference device (10.25%). CuBi2O4-treated C-PSCs retained 89.9% of their original PCE after 45 days in storage, and they demonstrated improved stability over a longer time frame. This remarkable improvement in device performance can be attributed to the effective suppression of nonradiative recombination and the enhancement of the carrier transfer process in the device. Additionally, the unique interconnected reticular structure of CuBi2O4-PN provides efficient pathways for hole transfer, significantly contributing to the enhanced efficiency of the device.

2.
Adv Sci (Weinh) ; : e2407570, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352320

RESUMEN

Anode cell reversal typically leads to severe carbon corrosion and catalyst layer collapse, which significantly compromises the durability of proton exchange membrane fuel cells. Herein, three types of commercial carbon supports with various structures are facilely coated by polyaniline (PANI) and subsequently fabricated into reversal-tolerant anodes (RTAs). Consequently, the optimized PANI-coated catalyst RTAs demonstrate enhanced polarization performance and improved reversal tolerance compared to their uncoated counterparts, thus confirming the universality of this coating strategy. Essentially, the surface engineering introduced by PANI coating incorporates abundant N-groups and enhances coulombic interactions with ionomer side chains, which in turn reduces lower carbon exposure, promotes more uniform Pt deposition, and ensures better ionomer distribution. Accordingly, the membrane-electrode-assembly containing the Pt/PANI/XC-72R-1+IrO2 RTA presents a 100 mV (at 2500 mA cm-2) polarization performance improvement and 26-fold reduction in the degradation rate compared to the uncoated counterpart. This work provides a universal strategy for developing durable anodes and lays the groundwork for the practical fabrication of high-performance, low-degradation RTA.

3.
J Colloid Interface Sci ; 678(Pt B): 40-49, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39236353

RESUMEN

Redox-active lignin rich in phenolic hydroxyl groups is an ingenious charge storage material. However, its insulating nature limits the storage/release of electrons and requires the construction of electron transfer channels within it. Herein, nanoparticles (PANI/DKL-NPs) are prepared by co-assembly via π-π interactions between conducting polyaniline (PANI) and demethylated Kraft lignin (DKL) molecules for the first time, and rapid electron transfer inside DKL is achieved. The co-assembled PANI/DKL-NPs consist of interpenetrating structures of PANI and DKL at the molecular scale, and the content of PANI molecules interspersed within them is controllable. Meanwhile, the extensive and abundant mesoporous structure in nanoscale PANI/DKL-NPs facilitates ion transport and electron storage. Based on this favorable microstructure, the specific capacitance of PANI/DKL-NPs at 1 A·g-1 is as high as 532 F·g-1, which is 780 % and 90.68 % higher compared to DKL-NPs and PANI-NPs, respectively. Meanwhile, the rate performance of PANI/DKL-NPs is significantly enhanced than that of DKL-NPs (33.11 %) and comparable to that of PANI-NPs (more than 69 %). Furthermore, the symmetric supercapacitor (PANI/DKL-NPs//PANI/DKL-NPs) assembled from it achieves a high energy density of 27.49 Wh·kg-1 at 400 W·kg-1 power density, and superb flexibility and mechanical stability. Therefore, the co-assembly of DKL and PANI will effectively stimulate the energy storage potential of lignin, providing a practical pathway to promote the development of biopolymers in energy storage.

4.
Macromol Rapid Commun ; : e2400574, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254511

RESUMEN

Promoting charge storage and fast charging capability simultaneously is a long-standing challenge for supercapacitors. A facile flowing seed polymerization is adopted to prepare polyaniline (PANI) nanofibers, in which phytic acid (PA) doped oligomers are first produced as the seeds for promoting the highly oriented growth of PANI nanofibers accompanying with the copolymerization of m-aminobenzene sulfonic acid (ASA) and aniline occurred on the surface of PANI nanofibers, as a result, unique core-shell structured PANI nanofibers are continuously fabricated. Benefitting from compact nanofiber structure, excellent dispersion, and self-doping effect, as-prepared PANI nanofibers exhibit a specific capacitance of 671.2 F g-1 at 2 A g-1 and ultrahigh rate capability of 93.1% from 2 to 100 A g-1. Then assembled all-solid-state supercapacitor can deliver the highest energy density of 28.3 Wh kg-1 at a power density of 320.2 W kg-1 with remarkable rate capability (81.2% from 1 to 20 A g-1), cycle stability (77.5% after 5000 cycles) as well as light weight and flexibility. It is highly desirable that the present green and scalable approach can be further applied to fabricate other unique core-shell structured PANI nanofibers with appealing potentials in energy storage devices.

5.
Macromol Rapid Commun ; : e2400449, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264537

RESUMEN

Surface covalent modification of black phosphorus (BP) with organic polymers represents a promising strategy to enhance its stability and tailor its electronic properties. Despite this potential, developing memristive materials through suitable polymer structures, grafting pathways, and polymerization techniques remains challenging. In this study, polyaniline (PANI)-covalently grafted black phosphorus nanosheets (BPNS) are successfully prepared with redox functionalities via the in situ polymerization of aniline on the surface of 4-aminobenzene-modified BPNS. The PANI coating protects the BP from direct exposure to oxygen and water, and it endows the material with analog memristive properties, characterized by a continuously adjustable resistance within a limited voltage scan range. When subjected to a broader voltage scan, the Al/PANI-g-BPNS/ITO device demonstrates a typical bistable digital memristive behavior. The integration of both digital and analog memristive functionalities in a single device paves the way for the development of high-density, multifunctional electronic components.

6.
Sci Rep ; 14(1): 21116, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256397

RESUMEN

Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.

7.
Environ Monit Assess ; 196(10): 923, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259367

RESUMEN

Two polyurethane polyaniline nanocomposites have been synthesized using two in situ polymerization routes of dried and wet bases to valorize the polyurethane waste. The physical and chemical properties of polyurethane-based nanocomposites were compared using SEM, XRD, FTIR, and Zeta potential. SEM images showed that the average particle size of the dried-based composite was 56 nm, while the wet-based composite had an average size of 75 nm. The separation efficiency for methylene blue (MB) and Congo red (CR) dyes was evaluated against free polyurethane foam waste. It was evident that pure polyurethane (PPU) achieved only 4.79% and 16.71% removal for MB and CR, respectively. These dye decontamination efficiencies were enhanced after nano polyaniline decoration of polyurethane foam either through dried base polymerization (DPUP) or wet base polymerization (WPUP). WPUP composite records 11.23% and 85.99% for MB and CR removal, respectively, improved to 26.69% and 90.07% removal using DPUP composite for the respective dyes. The adsorption kinetics, isotherms, and thermodynamics were investigated. The experimental results revealed the pseudo-second-order kinetic model as the most accurately described kinetics model for both CR and MB adsorption. The Langmuir model provided the best fit for the data, with maximum adsorption capacities of 110.98 mg/g for CR and 26.86 mg/g for MB, with corresponding R-squared values of 0.9974 and 0.9608, respectively. Regeneration and reusability studies of PPU, WPUP, and DPUP showed effective reusability, with DPUP displaying the highest adsorption capacity. These results aid in creating eco-friendly and cost-efficient adsorbents for dye removal in environmental sanitation.


Asunto(s)
Compuestos de Anilina , Colorantes , Nanocompuestos , Poliuretanos , Contaminantes Químicos del Agua , Poliuretanos/química , Compuestos de Anilina/química , Colorantes/química , Contaminantes Químicos del Agua/química , Nanocompuestos/química , Adsorción , Azul de Metileno/química , Eliminación de Residuos Líquidos/métodos , Descontaminación/métodos , Cinética , Rojo Congo/química
8.
Int J Biol Macromol ; 279(Pt 2): 135312, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236960

RESUMEN

Sensing motors and supercapacitors are pivotal in empowering smart systems, honing energy management, and facilitating the seamless integration of responsive electronics. Harnessing the electrochemistry of methylcellulose-polyaniline (MC/PANI) composites, this research delves into their potential applications as reactive current sensing supercapacitors with single connectivity. The electrochemical traits of pristine polyaniline (PANI) and MC/PANI composites were analyzed and assessed for their potential applications in sensors and energy storage devices. With a specific capacitance of 300Fg-1, the MC/PANI_B3 composite-based device retained 87.01 % capacitance after 2000 cycles. Besides, based on electrical energy as the sensing parameter, the composite exhibited augmented cathodic and anodic current sensitivity of 8.77 mJmA-1 and -8.86 mJmA-1, respectively. The ameliorated supercapacitor and current sensing parameters of MC/PANI_B3 are ascribed to the percolation threshold content of the conducting phase, which is endowed with optimal hydrogen bond-mediated interactions with methylcellulose (MC), thus confers an expanded chain conformation.

9.
Int J Biol Macromol ; 279(Pt 3): 135305, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236961

RESUMEN

The polyaniline/cross-linked collagen sponge (PANI/CCS) was synthesized by polymerizing PANI onto the collagen skeleton using mesoscopic collagen fibrils (CFs) as building blocks, serving as a piezoresistive sensing material. The structure and morphology of PANI/CCS were characterized using scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TA). The mechanical properties of PANI/CCS could be controlled by adjusting the CFs content and polymerization conditions. PANI/CCS treated with pure water exhibited exceptional compressive elasticity under 1000 compression cycles, demonstrating a wide strain range (0-85 %), rapid response time (200 ms), recovery time (90 ms), and high sensitivity (6.72 at 40-50 % strain). The treatment of the ionic liquid further improved the elasticity and the strain sensing range (0-95 %). The presence of PANI nanoparticles and mesoscopic collagen fibrils imparted antibacterial properties, stability in solvents, and biodegradability to PANI/CCS. Utilizing PANI/CCS as a piezoresistive sensing material enabled monitoring human movement behavior through the assembled sensor, showing significant potential for flexible wearable devices.

10.
Heliyon ; 10(18): e37757, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328562

RESUMEN

Conductive polymers have attracted much attention in various applications, owing to their excellent chemical, thermal, and oxidative stability. However, they have low dielectric constant, which limits their performance in electrochemical devices. To overcome this drawback, blending with other polymers helps improving their electrochemical properties. Herein, we investigate structural and electrochemical properties of poly (vinylidene fluoride) (PVDF)/polyaniline (PANI) blends doped with lithium-based salt. Results showed that the blends exhibit phase separation of PANI and PVDF, which is confirmed by the thermodynamic interaction parameter. We found that the interaction between the two polymers enhanced the ionic conductivity from 4.9 × 10-5 S cm-1 for neat PVDF to 5.3 × 10-4 S cm-1 for composition of 50:50 (PANI50), whereas the ionic conductivity was inversely proportional to the temperature. Moreover, by adding lithium salt to the blend, the thermal stability increased from 376.6 to 478.5 °C for PANI50. The ionic conductivity of the blends depends on the PVDF content, which affects the interaction between the two polymers.

11.
Int J Biol Macromol ; 280(Pt 3): 135959, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39317288

RESUMEN

Flexible wearable strain sensors exist the advantages of high resolution, lightweight, wide measurement range, which have unlimited potential in fields such as soft robotics, electronic skin, and artificial intelligence. However, current flexible sensors based on hydrogels still have some defects, including poor mechanical properties, self-adhesive properties and bacteriostatic properties. In this study, A conductive hydrogel Sodium Ligninsulfonate (LGS)@PANI-Ag-poly(vinyl alcohol) (PVA) hydrogels consisting of lignosulfonate-doped polyaniline (LGS@PANI), silver nitrate, and PVA interactions were designed and prepared for sensing applications. Here, the abundant reactive functional groups of lignosulfonates not only improve the electrochemical and electrical conductivity of polyaniline, thereby increasing its potential for sensing and capacitor applications, but also provide excellent mechanical properties (0.71 MPa), self-adhesion (81.27 J/m2) and ultraviolet (UV) resistance (UV inhibition close to 100 %) to the hydrogel. In addition, the hydrogel exhibited rich multifunctional properties, including tensile strain resistance (up to 397 %), antimicrobial properties (up to 100 % inhibition of Escherichia coli and Staphylococcus aureus), high sensitivity (gauge factor, GF = 4.18), and a rapid response time (100 ms). The LGS@PANI-Ag-PVA hydrogels showed potential for wearable sensors that monitor various biosignals from the human body, as well as human-computer interaction, artificial intelligence and other diverse fields.

12.
Heliyon ; 10(17): e37061, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39319120

RESUMEN

This paper contributed with new findings to understand and characterize a heavy metal adsorption on a composite adsorbent. The synthesized polypyrrole-polyaniline@rice husk ash (PPY-PANI@RHA) was prepared and used as an adsorbent for the removal of hexavalent chromium Cr(VI). The adsorption isotherms of Cr(VI) ions on PPY-PANI@RHA were experimentally determined at pH 2, and at different adsorption temperatures (293, 303, and 313 K). Multi-layer model developed using statistical physics formalism was applied to theoretically analyze and characterize the different interactions and ion exchanges during the adsorption process for the elimination of this toxic metal from aqueous solutions, and to attribute new physicochemical interpretation of the process of adsorption. The physicochemical structures and properties of the synthesized PPY-PANI@RHA were characterized via Fourier transform infrared spectroscopy (FTIR). Fitting findings showed that the mechanism of adsorption of Cr(VI) on PPY-PANI@RHA was a multi-ionic mechanism, where one binding site may be occupied by one and two ions. It may also be noticed that the temperature augmentation generated the activation of more functional groups of the composite adsorbent, facilitating the interactions of metal ions with the binding sites and the access to smaller pore. The energetic characterization suggested that the mechanism of adsorption of the investigated systems was exothermic and Cr(VI) ions were physisorbed on PPY-PANI@RHA surface via electrostatic interaction, reduction of Cr(VI) to Cr(III), hydrogen bonding, and ion exchange. Overall, the utilization of the theory of statistical physics provided fruitful and profounder analysis of the adsorption mechanism. The estimation of the pore size distribution (PSD) of the polypyrrole-polyaniline@rice husk ash using the statistical physics approach was considered stereographic characterization of the adsorbent (here PPY-PANI@RHA was globally a meso-porous adsorbent). Lastly, the mechanism of Cr(VI) removal from wastewater using PPY-PANI@RHA as adsorbent was macroscopically investigated via the estimation of three thermodynamic functions.

13.
Polymers (Basel) ; 16(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339105

RESUMEN

The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10-8 A·cm-2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields.

14.
Polymers (Basel) ; 16(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39339127

RESUMEN

Previous research highlights the potential of polyaniline-based biocomposites as unique adsorbents for humidity sensors. This study examines several preparative routes for creating polyaniline (PANI) and chitosan (CHT) composites: Type 1-in situ polymerization of aniline with CHT; Type 2-molecular association in acidic aqueous media; and a control, Type 3-physical mixing of PANI and CHT powders (without solvent). The study aims to differentiate the bonding nature (covalent vs. noncovalent) within these composites, which posits that noncovalent composites should exhibit similar physicochemical properties regardless of the preparative route. The results indicate that Type 1 composites display features consistent with covalent and hydrogen bonding, which result in reduced water swelling versus Type 2 and 3 composites. These findings align with spectral and thermogravimetric data, suggesting more compact structure for Type 1 materials. Dye adsorption studies corroborate the unique properties for Type 1 composites, and 1H NMR results confirm the role of covalent bonding for the in situ polymerized samples. The structural stability adopts the following trend: Type 1 (covalent and noncovalent) > Type 2 (possible trace covalent and mainly noncovalent) > Type 3 (noncovalent). Types 2 and 3 are anticipated to differ based on solvent-driven complex formation. This study provides greater understanding of structure-function relationships in PANI-biopolymer composites and highlights the role of CHT as a template that involves variable (non)covalent contributions with PANI, according to the mode of preparation. The formation of composites with tailored bonding modalities will contribute to the design of improved adsorbent materials for environmental remediation to versatile humidity sensor systems.

15.
Molecules ; 29(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339361

RESUMEN

Growing volumes of textile waste and heavy metal pollution of water are emerging environmental challenges. In an attempt to tackle these issues, a non-woven sorbent based on jute fibers was fabricated by recycling the textile waste from the carpet industry. The influence of contact time, concentration, pH and temperature on the sorption of lead and copper ions from aqueous solutions was studied. In order to enhance the sorption capacity of the non-woven material, in situ synthesis of polyaniline (PANI) in the presence of TiO2 nanostructures was performed. The contribution of TiO2 nanoparticles and TiO2 nanotubes to the uniformity of PANI coating and overall sorption behavior was compared. Electrokinetic measurements indicated increased swelling of modified fibers. FTIR and Raman spectroscopy revealed the formation of the emeraldine base form of PANI. FESEM confirmed the creation of the uniform nanocomposite coating over jute fibers. The modification with PANI/TiO2 nanocomposite resulted in a more than 3-fold greater sorption capacity of the material for lead ions, and a 2-fold greater absorption capacity for copper ions independently of applied TiO2 nanostructure. The participation of both TiO2 nanostructures in PANI synthesis resulted in excellent cover of jute fibers, but the form of TiO2 had a negligible effect on metal ion uptake.

16.
Chemistry ; : e202403011, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206678

RESUMEN

A bio-inspired FeFe hydrogenase model which catalyses hydrogen evolution reaction (HER) in acidic solutions is immobilized in polyaniline (PANI)-based nanotubes. A combination of analytical techniques reveals that this construct maintains both the molecular signatures of the bio-inspired complex and the material properties of PANI. The amine and imine-rich environment of the PANI chain amplifies the inherent HER activity of the bio-inspired complex, allowing electrocatalytic HER at neutral pH, with lower overpotentials and higher current densities compared to the bio-inspired complex alone. This construct retains the oxygen stability of the bio-inspired complex and remains stable through several hours of aerobic electrolysis, producing only 6.5% H2O2 from the competing oxygen reduction reaction (ORR).

17.
Small ; : e2400690, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210651

RESUMEN

Developing flexible energy storage devices with good deformation resistance under extreme operating conditions is highly desirable yet remains very challenging. Super-elastic MXene-enhanced polyvinyl alcohol/polyaniline (AMPH) hydrogel electrodes are designed and synthesized through vertical gradient ice templating-induced polymerization. This approach allows for the unidirectional growth of polyaniline (PANI) and 2D MXene layers along the elongated arrayed ice crystals in a controlled manner. The resulting 3D unidirectional AMPH hydrogel exhibits inherent stretchability and electronic conductivity, with the ability to completely recover its shape even under extreme conditions, such as 500% tensile strain, 50% compressive strain. The presence of MXene in the hydrogel electrode enhances its resilience to mechanical compression and stretching, resulting in less variation in resistance. AMPH has a specific capacitance of 130.68 and 88.02 mF cm-2 at a current density of 0.2 and 2 mA cm-2, respectively, and retains 90% and 70% of its original capacitance at elongation of 100% and 200%, respectively. AMPH-based supercapacitors demonstrate exceptional performance in high salinity environments and wide temperature ranges (-30-80 °C). The high electrochemical activity, temperature tolerance, and mechanical robustness of AMPH-based supercapacitor endow it promising as the power supply for flexible and wearable electronic devices.

18.
J Colloid Interface Sci ; 677(Pt B): 683-691, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39159523

RESUMEN

Heteroatom-doped electrodes offer promising applications for enhancing the longevity and efficiency of vanadium redox flow battery (VRFB). Herein, we controllably synthesized N, P co-doped graphite fiber electrodes with conductive network structure by introducing protonic acid and combining electrodeposition and high temperature carbonization. H2SO4 and H3PO4 act as auxiliary and dopant, respectively. The synergistic effect between N and P introduces additional defect structures and active sites on the electrodes, thereby enhancing the reaction rate, as confirmed by density functional theory calculations. Furthermore, the conductive network structure of carbon fibers improves electrode-to-electrode connectivity and reduces internal battery resistance. The optimized integration of these strategies enhances VRFB performance significantly. Consequently, the N, P co-doped carbon fiber modified graphite felt electrodes demonstrate remarkably high energy efficiency at 200 mA cm-2, surpassing that of the blank battery by 7.9 %. This integrated approach to in-situ controllable synthesis provides innovative insights for developing high-performance, stable electrodes, thereby contributing to advancements in the field of energy storage.

19.
Front Chem ; 12: 1412242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119518

RESUMEN

Known for its tunable conductivity and stability, Polyaniline (PANI) is a valuable polymer for electronics and sensing devices. Challenges in solubility have been addressed by creating sulfonated PANI (SPANI), enhancing its practical use. Synthesizing SPANI from sulfonated aniline is intricate, but laccase biocatalysis offers an eco-conscious solution, effective even against high redox potential obstacles. This research monitored the Trametes versicolor laccase-induced oxidation of 3-ABSa via UV-vis spectroscopy, with a notable peak at 565 nm signifying SPANI synthesis, effective even at suboptimal pH. Mediators further boost this process. Moreover, NMR and spectroelectrochemistry confirm the green synthesis of SPANI by laccase, hinting that pH fine-tuning could improve yields, alongside the concurrent creation of azobenzene derivatives.

20.
Heliyon ; 10(15): e34801, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170534

RESUMEN

PANI/Fe-doped CeO 2 nanocomposite was synthesised by the in-situ process. The produced powders were characterised by XRD, XPS, FT-IR, Raman, HRTEM and SEM-EDS tests. The sensors' function was based on PANI/Fe-doped CeO 2 nanocomposite with thin film deposited on top of interdigitated electrodes (IDT). NH 3 detection with PANI/Fe-doped CeO 2 nanocomposite sensor could be successfully performed even at room temperature (RT) and relative humidity of 45 %. Results demonstrated that PANI/Fe-doped CeO 2 might be promising sensing materials for detecting the low NH 3 concentration (ppm). In addition, the sensor is selective to the interfering gases, including CO, CO 2 and NO 2 . This sensor displays acceptable repeatability and stability over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA