Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.653
Filtrar
1.
Anal Chim Acta ; 1321: 342997, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39155106

RESUMEN

BACKGROUND: Polyelectrolyte grafted 'soft' nanochannels are known to enhance electrokinetic energy conversion efficiency, paving the way for a sustainable energy harvesting mechanism. However, the true potential of their efficacy remains to be tapped, as attributed to a deficit in accounting for the interplay between solution pH and ion partitioning effect arising due to permittivity contrast between the coated layer and the bulk media, leading to predictions of an erroneous ionic distribution and a wrongly estimated electrokinetic response. RESULTS: We unravel the electrokinetic behavior of a pH-regulated zwitterionic polyelectrolyte layer grafted nanofluidic system. To this end, we derive a detailed theoretical formulation that considers the nuanced interplay between solution pH and the ion partitioning effect through a thermodynamically consistent ionic distribution. Here, for the first time, we demonstrate a non-monotonic trend in the streaming potential with an increase in the ion partitioning effect, in contrast to a monotonic increase as reported previously. Additionally, we identify a critical permittivity ratio specific to the solution pH at which maximum streaming potential can be obtained. SIGNIFICANCE: We shed light on the counterintuitive effect borne from the increased ion partitioning effect, unveiling a hitherto hidden facet of electrokinetics. By elucidating the delicate balance between solution pH, ion partitioning effect, and polyelectrolyte charge, our findings offer a comprehensive understanding of the multifaceted interplay shaping soft-electrokinetic systems, thereby paving the way for transformative advancements in energy conversion technologies.

2.
AAPS PharmSciTech ; 25(6): 182, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138709

RESUMEN

Local anesthesia is essential in dental practices, particularly for managing pain in tooth socket wounds, yet improving drug delivery systems remains a significant challenge. This study explored the physicochemical characteristics of lidocaine hydrochloride (LH) incorporated into a polyelectrolyte complex and poloxamer thermosensitivity hydrogel, assessing its local anesthetic efficacy in mouse models and its onset and duration of action as topical anesthetics in clinical trials. The thermoresponsive hydrogel exhibited a rapid phase transition within 1-3 minutes and demonstrated pseudo-plastic flow behavior. Its release kinetics followed Korsmeyer-Peppas, with 50% of biodegradation occurring over 48 h. In mouse models, certain thermogels showed superior anesthetic effects, with rapid onset and prolonged action, as evidenced by heat tolerance in tail-flick and hot plate models. In clinical trials, the LH-loaded thermoresponsive hydrogel provided rapid numbness onset, with anesthesia (Ton) beginning at an average of 46.5 ± 22.5 seconds and lasting effectively (Teff) for 202.5 ± 41.0 seconds, ranging from 120 to 240 seconds, indicating sustained release. These results highlight the promising properties of these formulations: rapid onset, prolonged duration, mucoadhesion, biodegradability, and high anesthesia effectiveness. This study demonstrates the potential for advancing local anesthesia across various medical fields, emphasizing the synergy between material science and clinical applications to improve patient care and safety.


Asunto(s)
Anestésicos Locales , Sistemas de Liberación de Medicamentos , Hidrogeles , Lidocaína , Poloxámero , Lidocaína/administración & dosificación , Lidocaína/química , Animales , Hidrogeles/química , Anestésicos Locales/administración & dosificación , Anestésicos Locales/química , Ratones , Poloxámero/química , Sistemas de Liberación de Medicamentos/métodos , Polielectrolitos/química , Masculino , Liberación de Fármacos , Humanos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética
3.
Adv Mater ; : e2407560, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39139020

RESUMEN

Smart actuators hold great potential in soft robotics and sensors, but their movement at the fluid interface is less understood and controlled, hindering their performances and applications in complicated fluids. Here an ethanol-containing polyelectrolyte actuator is prepared that demonstrates excellent actuating performance via the Marangoni effect. These actuators exhibit enduring (17 min), repeatable (50 cycles), and autonomous motion on the water surface. More importantly, the motion of actuators are dependent on their shapes. Polygonal actuators with more edges exhibit round motion attached to walls of containers, while the actuators with few edges move randomly. On the basis of this property, the circular actuators can pass through pipe bends with S-shaped complex geometry. These unique advantages lend the actuators to successful applications in wireless sensing (standard 0-5 V level signals) for locating obstructions inside invisible pipes and continuous energy harvesting (7700 nC per cycle) for micro mechanical energy.

4.
Int J Biol Macromol ; 277(Pt 3): 134316, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094859

RESUMEN

Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.

5.
Polymers (Basel) ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125132

RESUMEN

The present study aimed to fabricate innovative fibrous materials with various biological activities from poly(3-hydroxybutyrate), sodium hyaluronate (HA), chitosan (Ch), Melissa officinalis (MO), Hypericum perforatum (HP) extract, or a combination of both extracts. Electrospinning or electrospinning followed by dip coating and the subsequent formation of a polyelectrolyte complex were the methods used to prepare these materials. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) were applied for investigating the morphology of materials, their thermal characteristics, and their surface chemical composition. The composition and design of the mats had an influence on the in vitro release behavior of the main bioactive compounds present in the MO and HP extracts incorporated in the materials. It was found that as-created materials comprising a combination of both extracts and a Ch/HA complex exerted higher antioxidant activity than that of (non-)coated MO-containing mats and Ch/HA-coated mats containing HP. The novel materials manifested antibacterial efficacy towards the pathogenic bacteria S. aureus and E. coli, as evidenced by the performed microbiological screening. Furthermore, the mats possessed a great growth inhibitory effect on HeLa cancer cells but had a less pronounced effect on the growth of normal mouse BALB/3T3 fibroblasts. The loading of both extracts in the mats and the formation of coating led to the enhancement of the in vitro anticancer and antibacterial activities of the materials. Thus, the novel materials have potential for use in local cancer therapy as well as for use as wound dressings.

6.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125837

RESUMEN

In this work, the conformational behaviors of ring polyelectrolyte in tetravalent salt solutions are discussed in detail through molecular dynamics simulation. For simplification, here we have neglected the effect of the twisting interaction, although it has been well known that both bending and twisting interactions play a deterministic in the steric conformation of a semiflexible ring polymer. The salt concentration CS and the bending energy b take a decisive role in the conformation of the ring polyelectrolyte (PE). Throughout our calculations, the b varies from b = 0 (freely joint chain) to b = 120. The salt concentration CS changes in the range of 3.56 × 10-4 M ≤ CS ≤ 2.49 × 10-1 M. Upon the addition of salt, ring PE contracts at first, subsequently re-expands. More abundant conformations are observed for a semiflexible ring PE. For b = 10, the conformation of semiflexible ring PE shifts from the loop to two-racquet-head spindle, then it condenses into toroid, finally arranges into coil with the increase of CS. As b increases further, four phase transitions are observed. The latter two phase transitions are different. The semiflexible ring PE experiences transformation from toroid to two racquet head spindle, finally to loop in the latter two phase transitions. Its conformation is determined by the competition among the bending energy, cation-bridge, and entropy. Combined, our findings indicate that the conformations of semiflexible ring PE can be controlled by changing the salt concentration and chain stiffness.


Asunto(s)
Conformación Molecular , Simulación de Dinámica Molecular , Polielectrolitos , Sales (Química) , Polielectrolitos/química , Sales (Química)/química , Soluciones
7.
Carbohydr Polym ; 343: 122455, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174092

RESUMEN

Polysaccharides like hyaluronan (HA) and chondroitin sulfate (CS) are native of the brain's extracellular matrix crucial for myelination and brain maturation. Despite extensive research on HA and CS as drug delivery systems (DDS), their high water solubility limits their application as drug carriers. This study introduces an injectable DDS using aldehyde-modified hyaluronic acid (HAOX) hydrogel containing polyelectrolyte complexes (PEC) formed with calcium, gelatin, and either CS or aldehyde-modified CS (CSOX) to deliver minocycline for Multiple Sclerosis therapy. PECs with CSOX enable covalent crosslinking to HAOX, creating immobilized PECs (HAOX_PECOX), while those with CS remain unbound (HAOX_PECS). The in situ forming DDS can be administered via a 20 G needle, with rapid gelation preventing premature leakage. The system integrates into an implanted device for minocycline release through either Fickian or anomalous diffusion, depending on PEC immobilization. HAOX_PECOX reduced burst release by 88 %, with a duration of 127 h for 50 % release. The DDS exhibited an elastic modulus of 3800 Pa and a low swelling ratio (0-1 %), enabling precise control of minocycline release kinetics. Released minocycline reduced IL-6 secretion in the Whole Blood Monocytes Activation Test, suggesting that DDS formation may not alter the biological activity of the loaded drug.


Asunto(s)
Sulfatos de Condroitina , Portadores de Fármacos , Gelatina , Ácido Hialurónico , Hidrogeles , Minociclina , Polielectrolitos , Ácido Hialurónico/química , Gelatina/química , Sulfatos de Condroitina/química , Hidrogeles/química , Hidrogeles/farmacología , Minociclina/química , Minociclina/farmacología , Minociclina/administración & dosificación , Polielectrolitos/química , Humanos , Portadores de Fármacos/química , Liberación de Fármacos , Aldehídos/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Interleucina-6/metabolismo
8.
J Food Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175176

RESUMEN

Microencapsulation has the potential to address the stability issues associated with vitamin A. This study examined the effectiveness of emulsifying a saponin-chitosan polyelectrolyte complex to encapsulate vitamin A. Utilizing response surface methodology (RSM), the effects of the chitosan, saponin, and vitamin A contents on various response variables were measured to optimize the formulation. The optimized emulsion was characterized through fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), storage stability, and release profile. Fluorescence microscopy showed that vitamin A was evenly distributed throughout the optimized emulsion. The polyelectrolyte complex and vitamin A were shown to interact hydrophobically and electrostatically by FTIR analysis. The DSC results verified the effective encapsulation and showed that vitamin A heat stability had been enhanced. Study on storage stability demonstrated that during a 2-month storage period, the encapsulated vitamin A remained stable. Moreover, vitamin A was significantly released from the encapsulated form at pH 1.2, based on release assays. In conclusion, saponin-chitosan polyelectrolyte coating proved to be a potentially useful new material for the stability and applications of vitamin A in a range of formulations.

9.
J Colloid Interface Sci ; 678(Pt A): 98-107, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182390

RESUMEN

HYPOTHESIS: Lipid nanoparticle self-assembly is a complex process that relies on ion pairing between nucleic acids and hydrophobic cationic lipid counterions for encapsulation. The chemical factors influencing this process, such as formulation composition, have been the focus of recent research. However, the physical factors, particularly the mixing protocol, which directly modulates these chemical factors, have yet to be mechanistically examined using a reproducible mixing platform comparable to the industry standard. We here utilize Flash NanoPrecipitation (FNP), a scalable rapid mixing platform, to isolate and systematically investigate how mixing factors influence this complexation step, first by using a model polyelectrolyte-surfactant system and then generalizing to a typical RNA lipid nanoparticle formulation. EXPERIMENTS: Aqueous polystyrene sulfonate (PSS) and cetrimonium bromide (CTAB) solutions are rapidly homogenized using reproducible FNP mixing and controlled flow rates at different stoichiometric ratios and total solids concentrations to form polyelectrolyte-surfactant complexes (PESCs). Then, key mixing factors such as total flow rate, inlet stream relative volumetric flow rate, and magnitude of flow fluctuation are studied using both this PESC system and an RNA lipid nanoparticle formulation. FINDINGS: Fluctuations in flow as low as ± 5 % of the total flow rate are found to severely compromise PESC formation. This result is replicated in the RNA lipid nanoparticle system, which exhibited significant differences in size (132.7 nm vs. 75.6 nm) and RNA encapsulation efficiency (34.0 % vs. 82.8 %) under fluctuating vs. steady flow. We explain these results in light of the chemical variables isolated and studied; slow or nonuniform mixing generates localized concentration gradients that disrupt the balance between the hydrophobic and electrostatic forces that drive complex formation. These experiments contribute to our understanding of the complexation stage of lipid nanoparticle formation and provide practical insights into the importance of developing controlled mixing protocols in industry.

10.
Int J Biol Macromol ; : 135001, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182868

RESUMEN

This study reports the successful synthesis of flame-retardant and smoke-suppressing epoxy resin (EP) via bio-based polyelectrolyte flame retardants. Herein, a novel polyelectrolyte flame retardant was prepared from chitosan (CS) and hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene (HCPCP) by acid-base neutralization reaction, which the HCPCP was synthesized with hexachlorocyclotriphosphazene (HCCP) and methyl p-hydroxybenzoate (MP) by nucleophilic substitution reaction. The combined effect of the addition on the flame retardant, smoke suppression and mechanical properties of EP samples were systematically investigated. The presence of this bio-based polyelectrolyte provided excellent smoke suppression and flame-retardant properties of the prepared EP. Among them, the peak heat release rate (PHRR), peak smoke production rate (PSPR) and total smoke production (TSP) of EP/9wt%3CS-HCPCP composite (the ratio of CS to HCPCP was 3: 7, and the dosage was 9 wt%) were reduced by 45.42 %, 41.66 % and 22.56 %, respectively. In addition, the EP/CS-HCPCP composites showed a 207.80 % enhancement in char residue compared to pure EP. These results suggest a green and cost-effective strategy for the production of flame-retardant, drip-proof and smoke-suppressed EP composites.

11.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000673

RESUMEN

The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.

12.
Small ; : e2404306, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958070

RESUMEN

Nanofluidic ionic diodes have attracted much attention due to their unique functions as unidirectional ion transportation ability and promising applications from molecular sensing, and energy harvesting to emerging neuromorphic devices. However, it remains a challenge to fabricate diode-like nanofluidic systems with ultrathin film thickness <100 nm. Herein the formation of ultrathin ionic diodes from hybrid nanoassemblies of nanoporous (NP) SiO2 nanofilms and polyelectrolyte layer-by-layer (LbL) multilayers is described. Ultrathin ionic diodes are prepared by integrating polyelectrolyte multilayers onto photo-oxidized NP SiO2 nanofilms obtained from silsesquioxane-containing block copolymer thin films as a template. The obtained ultrathin ionic diodes exhibit ion current rectification (ICR) properties with high ICR factor = ≈20 under low ionic strength and asymmetric pH conditions. It is concluded that this ICR behavior arises from effective ion accumulation and depletion at the interface of NP SiO2 nanofilms and LbL multilayers attributed to high ion selectivity by combining the experimental data and theoretical calculations using finite element methods. These results demonstrate that the hybrid nano assemblies of NP SiO2 nanofilms and polyelectrolyte LbL multilayers have potential applications for (bio)sensing materials and integrated ionic circuits for seamless connection of human-machine interfaces.

13.
ACS Nano ; 18(32): 20999-21008, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39082885

RESUMEN

Arrays of nanoparticle (NP) clusters with controlled architectures show broad applications in nanolasers, sensors, and photocatalysis, but the fabrication of these arrays on substrates remains a grand challenge. This review presents a highly effective polymer-based strategy for the process-directed self-assembly of binary polyelectrolyte-grafted NPs (PGNPs) bearing opposite charges into stable colloidal molecules (CMs) on substrates via electrostatic interactions. The coordination number (x) of ABx CMs can be tuned by adjusting the pH or ionic strength of the solution or by employing different combinations of PGNPs with varying charge densities. Large-area CMs with diverse structures ranging from AB to AB7 can be constructed on substrates in high yields. This approach is applicable to PGNPs with different cores of NPs. This assembly strategy offers a useful tool for the fabrication of structurally precise assemblies on substrates with broad applications.

14.
Colloids Surf B Biointerfaces ; 242: 114110, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047645

RESUMEN

Gene transfection, which involves introducing nucleic acids into cells, is a pivotal technology in the life sciences and medical fields, particularly in gene therapy. Surface-mediated transfection, primarily targeting cells adhering to surfaces, shows promise for enhancing cell transfection by localizing and presenting surface-bound nucleic acids directly to the cells. However, optimizing endocytosis for efficient delivery remains a persistent challenge. Additionally, ensuring efficient and non-traumatic cell harvest capability is crucial for applications such as ex vivo cell-based therapy. To address these challenges, we developed a photothermal platform with enzymatic degradation capability for efficient gene transfection and cell harvest. This platform is based on carbon nanotubes (CNTs) doped with poly(dimethylsiloxane) and modified with polyelectrolyte multilayers (PEMs) containing hyaluronic acid and quaternized chitosan, allowing for substantial loading of poly(ethyleneimine)/plasmid DNA (pDNA) complexes through electrostatic interactions. Upon irradiation of near-infrared laser, the photothermal properties of CNTs enable high transfection efficiency by delivering pDNA into attached cells via a membrane disruption mechanism. The engineered cells can be harvested by treating with a non-toxic hyaluronidase solution to degrade PEMs, thus maintaining good viability for further applications. This platform has demonstrated remarkable efficacy across various cell lines (including Hep-G2 cells, Ramos cells and primary T cells), achieving a transfection efficiency exceeding 95 %, cell viability exceeding 90 %, and release efficiency surpassing 95 %, highlighting its potential for engineering living cells.


Asunto(s)
ADN , Polielectrolitos , Propiedades de Superficie , Transfección , Humanos , Transfección/métodos , Polielectrolitos/química , ADN/química , Plásmidos/química , Plásmidos/genética , Nanotubos de Carbono/química , Ácido Hialurónico/química , Quitosano/química , Supervivencia Celular/efectos de los fármacos , Dimetilpolisiloxanos/química , Polietileneimina/química , Células Hep G2
15.
Int J Biol Macromol ; 277(Pt 2): 134142, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059532

RESUMEN

A polyelectrolyte system consisting of sodium alginate (SA) and quaternary ammonium chitosan (QAC) blended with polydopamine-coated copper sulfide particles (CuS@PDA) was chosen to investigate the function of CuS@PDA in the uniform binary blending of anionic and cationic polyelectrolytes in detail. A smart composite fiber SA/QAC/CuS@PDA was prepared via a dry-wet spinning technique. With the addition of CuS@PDA (about 4.3 % in fiber), the as-prepared SA/QAC/CuS@PDA-0.50 fibers (SQCuS@P-0.50 SCFs) showed notably enhanced intensity 359.2 MPa, excellent moisture response, and photothermal conversion performance, with the temperature increasing from 25.9 to 80.7 °C as irradiated under a 980 nm infrared lamp at distance 20 cm away for 120 s. The photothermal performance was maintained after 6 lighting on-and-off cycles. The tensile strength decreased ~23.8 % after 4 cycles, then remained fixed. The diameter increases to ~480 % in wet state but decreases to the original size in dry state for 10 cycles. When the fabric with 90 wt% SQCuS@P-0.50 SCFs was used as a water evaporator, the water evaporation rate and efficiency were 1.68 kg·m-2·h-1 and 102 % under 1 sun irradiation. This work provides a simple and ecofriendly strategy for fabricating photothermal fabrics by designing and preparing composite fibers.


Asunto(s)
Alginatos , Quitosano , Cobre , Indoles , Polímeros , Alginatos/química , Quitosano/química , Polímeros/química , Indoles/química , Cobre/química , Temperatura , Purificación del Agua/métodos , Polielectrolitos/química , Agua/química , Salinidad
16.
ACS Appl Mater Interfaces ; 16(29): 37952-37962, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38990338

RESUMEN

Commercial membranes today are manufactured from a handful of membrane materials. While these systems are well-optimized, their capabilities remain constrained by limited chemistries and manufacturing methods available. As a result, membranes cannot address many relevant separations where precise selectivity is needed, especially with complex feeds. This constraint requires the development of novel membrane materials that offer customizable features to provide specific selectivity and durability requirements for each application, enabled by incorporating different functional chemistries into confined nanopores in a scalable process. This study introduces a new class of membrane materials, amphiphilic polyelectrolyte complexes (APECs), comprised of a blend two distinct amphiphilic polyelectrolytes of opposite charge that self-assemble to form a polymer selective layer. When coated on a porous support from a mixture in a nonaqueous solvent, APECs self-assemble to create ionic nanodomains acting as water-conducting nanochannels, enveloped within hydrophobic nanodomains, ensuring structural integrity of the layer in water. Notably, this approach allows precise control over selectivity without compromising pore size, permeability, or fouling resistance. For example, using only one pair of amphiphilic copolymers, sodium sulfate rejections can be varied from >95% to <10% with no change in effective pore size and fouling resistance. Given the wide range of amphiphilic polyelectrolytes (i.e., combinations of different hydrophobic, anionic, and cationic monomers), APECs can create membranes with many diverse chemistries and selectivities. Resultant membranes can potentially address precision separations in many applications, from wastewater treatment to chemical and biological manufacturing.

17.
Angew Chem Int Ed Engl ; : e202408673, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981860

RESUMEN

Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic, thermal and ion responsive soft matter. that exhibits a spectrum of physical properties, spanning viscous fluids, to viscoelastic and viscoplastic solids. These ion dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter, properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.

18.
ACS Appl Mater Interfaces ; 16(30): 39321-39329, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024512

RESUMEN

Biological photoresponsive ion transport systems consistently attract researchers' attention owing to their remarkable functions of harvesting energy from nature and participating in visual perception systems. Designing and constructing artificial light-driven ion transport devices to mimic biological counterparts remains a challenge owing to fabrication limitations in nanoconfined spaces. Herein, a typical conjugated polyelectrolyte (PFN-Br) was assembled onto a laminated MoS2M using simple solution-processing vacuum filtration, resulting in a heterogeneous three- and two-dimensional nanoporous membrane. The designed band alignment between PFN-Br and MoS2 enables effective directional ion transport under irradiation in an equilibrium solution, even against a 30-fold concentration gradient. The staggered energy structure of PFN-Br and MoS2 enhances charge separation and establishes a photogenerated potential as the driving force for ion transport. Additionally, the activation energy barrier for ion transport across the heterogeneous membrane decreased by 60% after light irradiation, considerably improving ion transport flux. The easy fabrication and high performance of the membrane in light-powered ion transport provide promising approaches for designing nanofluidic devices with possible applications in energy conversion, light-enhanced biosensing, and photoresponsive ionic devices.

19.
J Colloid Interface Sci ; 672: 654-663, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865879

RESUMEN

HYPOTHESIS: Understanding polyelectrolyte complexation remains limited due to the absence of a systematic methodology for analyzing the distribution of components between the polyelectrolyte complex (PEC) and the dilute phases. EXPERIMENTS: We developed a methodology based on NMR to quantify all components of solid-like PECs and their supernatant phases formed by mixing different ratios of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid)-sodium salt (PAA). This approach allowed for determining relative and absolute concentrations of polyelectrolytes in both phases by 1H NMR studies. Using 23Na and 35Cl NMR spectroscopy we measured the concentration of counterions in both phases. FINDINGS: Regardless of the mixing ratio of the polyelectrolytes the PEC is charge-stoichiometric, and any excess polyelectrolytes to achieve charge stoichiometry remains in the supernatant phase. The majority of counterions were found in the supernatant phase, confirming counterion release being a major thermodynamic driving force for PEC formation. The counterion concentrations in the PEC phase were approximately twice as high as in the supernatant phase. The complete mass balance of PEC formation could be determined and translated into a molecular picture. It appears that PAH is fully charged, while PAA is more protonated, so less charged, and some 10% extrinsic PAH-Cl- pairs are present in the complex.

20.
J Colloid Interface Sci ; 674: 459-473, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941938

RESUMEN

Stone-built cultural heritage faces threats from natural forces and anthropogenic pollutants, including local climate, acid rain, and outdoor conditions like temperature fluctuations and wind exposure, all of which impact their structural integrity and lead to their degradation. The development of a water-based, environmentally-friendly protective coatings that meet a combination of requirements posed by the diversity of the substrates, different environmental conditions, and structures with complex geometries remains a formidable challenge, given the numerous obstacles faced by current conservation strategies. Here we report the structural, electrical, and mechanical characterization, along with performance testing, of a nanostructured hydrophilic and self-healing hybrid coating based on hydroxyapatite (HAp) nanocrystals and polyelectrolyte multilayers (PEM), formed in-situ on Greek marble through a simple spray layer-by-layer surface functionalization technique. The polyelectrolyte-hydroxyapatite multilayer (PHM) structure resembled the design of naturally forming trabecular bone, attained at a short procedural time. It exhibited chemical affinity, aesthetical compatibility and resistance to weathering while offering reversibility. The proposed method is able to generate micron-sized coatings with controlled properties, such as adhesion and self-healing, leading to less weathered surfaces. Our results show that the PHM is a highly effective protective material that can be applied for stone protection and other similar applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA