Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473945

RESUMEN

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of the potential impurities of dexketoprofen, including the distomer R-ketoprofen. After screening the separation capability of four polysaccharide columns (Lux Amylose-1, Lux Amylose-2, Lux Cellulose-1 and Lux Cellulose-2) in polar organic and in reversed-phase modes, appropriate enantioseparation was observed only on the Lux Amylose-2 column in an acidified acetonitrile/water mixture. A detailed investigation of the mobile phase composition and temperature for enantio- and chemoselectivity showed many unexpected observations. It was observed that both the resolution and the enantiomer elution order can be fine-tuned by varying the temperature and mobile phase composition. Moreover, hysteresis of the retention times and enantioselectivity was also observed in reversed-phase mode using methanol/water mixtures on amylose-type columns. This could indicate that the three-dimensional structure of the amylose column can change by transitioning from a polar organic to a reversed-phase mode, which affects the enantioseparation process. Temperature-dependent enantiomer elution order and rare enthalpic/entropic controlled enantioseparation in the operative temperature range were also observed in reversed-phase mode. To find the best methodological conditions for the determination of dexketoprofen impurities, a full factorial optimization design was performed. Using the optimized parameters (Lux Amylose-2 column with water/acetonitrile/acetic acid 50/50/0.1 (v/v/v) at a 1 mL/min flow rate at 20 °C), baseline separations were achieved between all compounds within 15 min. Our newly developed HPLC method was validated according to the current guidelines, and its application was tested on commercially available pharmaceutical formulations. According to the authors' knowledge, this is the first study to report hysteretic behavior on polysaccharide columns in reversed-phase mode.


Asunto(s)
Amilosa , Cromatografía de Fase Inversa , Cetoprofeno/análogos & derivados , Trometamina , Amilosa/química , Temperatura , Polisacáridos/química , Celulosa/química , Cromatografía Líquida de Alta Presión/métodos , Agua , Acetonitrilos , Estereoisomerismo
2.
Chirality ; 32(3): 314-323, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925851

RESUMEN

The detection and separation of medetomidine enantiomers from the complex biological matrices poses a great analytical challenge, especially in the field of forensic toxicology and pharmacology. Couple of researchers reported resolution of medetomidine using protein-based chiral columns, but the reported method is quiet challenging and tedious to be employed for routine analysis. This research paper reported a method that enables the enantio-separation of medetomidine by using polysaccharide cellulose chiral column. The use of chiralcel OJ-3R column was found to have the highest potential for successful chiral resolution. Ammonium hydrogen carbonate was the ideal buffer salt for chiral liquid chromatography (LC) with electrospray ionization (ESI)+ mass spectrometry (MS) detection for the successful separation and detection of racemic compound. The method was linear over the range of 0 to 20 ng/mL in equine plasma and the inter-day precisions of levomedetomidine, dexmedetomidine were 1.36% and 1.89%, respectively. The accuracy of levomedetomidine was in the range of 99.25% to 101.57% and that for dexmedetomidine was 99.17% to 100.99%. The limits of quantification for both isomers were 0.2 ng/mL. Recovery and matrix effect on the analytes were also evaluated. Under the optimized conditions, the validated method can be adapted for the identification and resolution of the medetomidine enantiomers in different matrices used for drug testing and analysis.


Asunto(s)
Cromatografía Liquida/métodos , Medetomidina/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Celulosa/química , Dexmedetomidina/sangre , Dexmedetomidina/aislamiento & purificación , Caballos , Límite de Detección , Medetomidina/química , Medetomidina/aislamiento & purificación , Estereoisomerismo
3.
J Chromatogr A ; 1510: 82-88, 2017 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652002

RESUMEN

The performance of a 3×50mm, 1.6µm dp column with an immobilized polysaccharide stationary phase (ChiralPak IA-U) was evaluated for efficiency, and pressure drop, with respect to flow rate and modifier concentration using supercritical fluid chromatography (SFC). This appears to be the first such report using such a column in SFC. A unique low dispersion (ultra-high performance) SFC was used for the evaluation. The minimum reduced plate height of 2.78, indicates that the maximum efficiency was similar to or better than coated polysaccharide columns. Selectivity was different from ChiralPak AD, with the same chiral selector, as reported by many others. At high flows and high methanol concentrations, pump pressures sometimes approached 600bar. With 5% methanol, pressure vs. flow rate was non-linear suggesting turbulent flow in the connector tubing. The optimum flow rate (Fopt) at 40% methanol was ≈0.8mL/min, where the column efficiency was highest. At 5% methanol, Fopt increased to ≈1.6mL/min, but efficiency degraded noticeably. The differences in Fopt suggests that the solute diffusion coefficients are a strong function of modifier concentration. Several sub-1min separations, including a 7.5s separation, are presented.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Cromatografía con Fluido Supercrítico , Polisacáridos/química , Amilosa/análogos & derivados , Amilosa/química , Técnicas de Química Analítica/normas , Cinética , Metanol/química , Fenilcarbamatos/química , Presión , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA