Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39226372

RESUMEN

In this report, we describe the incorporation of single-walled carbon nanotubes (CNTs) into 3D printable siloxane elastomers for electrostatic dissipation. The composite was characterized, focusing on how rheological and mechanical properties of the siloxane are affected at various CNT loading levels. Electrical properties were also characterized to develop materials with effective electrostatic dissipation. We demonstrate that low loadings (<1 wt %) of CNTs can be sufficiently dispersed into silicone resins that can be 3D printed, and the resulting material shows a significant improvement in electrostatic dissipation through the reduction in electrical resistivity with minimal effect on its mechanical properties.

2.
Chempluschem ; : e202400302, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230969

RESUMEN

The organic-inorganic hybrid fluorescent hyperbranched polymer, including hyperbranched polysiloxane and hyperbranched polyborate, have attracted much attention due to their excellent optical properties and wide range of applications. Hyperbranched polysiloxane and polyborates, prepared by introducing Si or B elements into organic polymer chains at the molecular level through rational molecular design and novel synthesis methods, exhibit outstanding photophysical properties as an indispensable branch of organic-inorganic hybrid fluorescent materials. Herein, this review article highlights the recent research progress on hyperbranched polysiloxanes and hyperbranched polyborates, including strategies for regulating their emission wavelengths, quantum yields, and fluorescence lifetimes, potential emission mechanisms, and various applications. Finally, some challenges and promising future directions in the field of organic-inorganic hybrid fluorescent polymers are summarized.

3.
J Appl Crystallogr ; 57(Pt 4): 945-954, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108813

RESUMEN

Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.

4.
Dent Res J (Isfahan) ; 21: 41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188391

RESUMEN

Background: There is limited literature available comparing the accuracy of intraradicular impressions made with a novel hybrid impression material using the indirect and direct technique at three different locations. Materials and Methods: For this comparative in vitro analysis, postspace was prepared in 15 recently extracted teeth and impressions made with vinyl polysiloxane, polyether (PE), vinyl polyether silicone (VPES), and pattern resin. Postpatterns obtained were re-seated on the teeth and longitudinally sectioned. A binocular microscope was used to measure apical and lateral discrepancies at three locations (L1, L2, and L3). L1 at the postcore junction, L2 at the middle of the post space, and L3, 2 mm short of the apical end. The data obtained were statistically analyzed using the Statistical Package for the Social Sciences (SPSS) software. One-way analysis of variance (ANOVA) (intergroup) followed by Tukey's post hoc test with P ≤ 0.05 was used. Results: The one-way ANOVA noted a highly significant difference at the apical location. Pattern resin had the highest apical discrepancy (151.93 ± 8.59 µm), whereas the lowest was with vinyl PE silicone (140.31 ± 11.46 µm). At L1, the highest discrepancy was seen with pattern resin (32.09 ± 2.31 µm), whereas the lowest was with the addition silicone (31.94 ± 2.54 µm). At L2, addition silicone (32.88 ± 2.81 µm) showed the highest discrepancy, whereas the lowest was with vinyl PE silicone (30.5 ± 8.79 µm). The PE group had the highest mean at the L3 location (31.38 ± 3.46 µm) and the lowest was with vinyl PE silicone (30.93 ± 2.25 µm). At all lateral locations, no significant difference was noted. Tukey's post hoc comparison showed a significant difference between pattern resin and VPES (11.62 µm) followed by pattern resin and addition silicone (11.47 µm) apically. Conclusion: The indirect technique using VPES or addition silicone is more accurate than the direct technique at the apical location.

5.
J Int Soc Prev Community Dent ; 14(3): 252-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055300

RESUMEN

Aim: To evaluate the mechanical properties of a newly formulated vinyl polysiloxane (VPS) impression material. Materials and Methods: Experimental, Capture (S&C Polymer), Express, Imprint 3 and Imprint 4 (3M ESPE), Start VPS (Danville), Honigum (DMG), Virtual (Ivoclar Vivadent), Elite HD+ (Zhermack) were evaluated for tear strength, tensile strength, and elongation at break. Un-nicked specimens with a 90° angle on one side (type C) for tear strength were prepared and tested according to ASTM-D624. Dumbbell-shaped specimens (type 1) for tensile strength and elongation at break were prepared and tested according to ISO 37. All tests were carried out at 500 mm/min on a Shimadzu (AGS-X-10 KN-table top) tester. A one-way analysis of variance (ANOVA) was used to analyze the data. Results: Experimental material showed significantly higher or higher tear strength and elongation at break compared to other impression materials for both light body (LB) and heavy body (HB). For tensile strength, Experimental is similar to most impression materials; however, significantly lower than Imprint 3 and Start VPS for LB. This parameter for HB is higher or significantly higher than other impression materials except Start VPS. Tear strength and tensile strength were not correlated for LB but have a weak or moderate correlation for HB. Elongation at break is inversely proportional to tensile strength moderately for LB; however, there is no or very weak relation for HB. Conclusions: Experimental VPS impression material demonstrated a significantly higher tear strength and adequate tensile strength with higher elongation compared to other commercially available VPS impression materials. Adequate mechanical properties can provide accurate impressions for successful clinical fabrication of restorations. Experimental VPS impression material is suitable for use in dental impressions for fabrication of restorations.

6.
Polymers (Basel) ; 16(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732731

RESUMEN

Transparent polysiloxane elastomers with good self-healing and reprocessing abilities have attracted significant attention in the field of artificial skin and flexible displays. Herein, we propose a simple one-pot method to fabricate a room temperature self-healable polysiloxane elastomer (HPDMS) by introducing dynamic and reversible imine bonds and boroxine into polydimethylsiloxane (PDMS) networks. The presence of imine bonds and boroxine is proved by FT-IR and NMR spectra. The obtained HPDMS elastomer is highly transparent with a transmittance of up to 80%. The TGA results demonstrated that the HPDMS elastomer has good heat resistance and can be used in a wide temperature range. A lower glass transition temperature (Tg, -127.4 °C) was obtained and revealed that the elastomer is highly flexible at room temperature. Because of the reformation of dynamic reversible imine bonds and boroxine, the HPDMS elastomers exhibited excellent autonomous self-healing properties. After healing for 3 h, the self-healing efficiency of HPDMS reached 96.3% at room temperature. Moreover, the elastomers can be repeatedly reprocessed multiple times under milder conditions. This work provides a simple but effective method to prepare transparent self-healable and reprocessable polysiloxane elastomers.

7.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675061

RESUMEN

Current research on materials engineering focuses mainly on bio-based materials. One of the most frequently studied materials in this group is polylactide (PLA), which is a polymer derived from starch. PLA does not have a negative impact on the natural environment and additionally, it possesses properties comparable to those of industrial polymers. The aim of the work was to investigate the potential of organosilicon compounds as modifiers of the mechanical and rheological properties of PLA, as well as to develop a new method for conducting mechanical property tests through innovative high-throughput technologies. Precise dosing methods were utilized to create PLA/silicone polymer blends with varying mass contents, allowing for continuous characterization of the produced blends. To automate bending tests and achieve comprehensive characterization of the blends, a self-created workstation setup has been used. The tensile properties of selected blend compositions were tested, and their ability to withstand dynamic loads was studied. The blends were characterized through various methods, including rheological (MFI), X-ray (XRD), spectroscopic (FTIR), and thermal properties analysis (TG, DSC, HDT), and they were evaluated using microscopic methods (MO, SEM) to examine their structures.

8.
Int J Biol Macromol ; 268(Pt 1): 131612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631572

RESUMEN

Cotton fabric is extensively utilized due to its numerous applications, but the flammability associated with cotton fabric poses potential security risks to individuals. A halogen-free efficient flame retardant named poly [(tetramethylcyclosiloxyl spirocyclic pentaerythritol)-piperazin phosphate] (PCPNTSi) was developed to consolidate the fire retardance of cotton fabrics. After PCPNTSi treatment, the limiting oxygen index (LOI) of cotton fabric with 30 % weight gain (CP3) was raised to 32.8 %. In the vertical flammability test (VFT), CP3 has self-extinguished performance with a char length of 8.7 cm. The heat release rate (HRR) of cotton fabric with 20 % weight gain (CP2) is 78.8 % lower than that of pure cotton fabric (CP0). In addition, the total smoke release (TSP) of CP2 is 41.7 % lower than that of CP0, indicating PCPNTSi gives cotton fabric a good capability to inhibit smoke release. Finally, the possible flame retardant mechanism was discussed by the data of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and thermogravimetric infrared spectroscopy (TG-IR). The results show that PCPNTSi is an intumescent flame retardant acting in both gas phase and solid phase.


Asunto(s)
Fibra de Algodón , Retardadores de Llama , Retardadores de Llama/análisis , Fibra de Algodón/análisis , Nitrógeno/química , Textiles/análisis
9.
Materials (Basel) ; 17(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38591380

RESUMEN

In this study, organosilicon compounds were used as modifiers of filaments constituting building materials for 3D printing technology. Polymethylhydrosiloxane underwent a hydrosilylation reaction with styrene, octadecene, and vinyltrimethoxysilane to produce new di- or tri-functional derivatives with varying ratios of olefins. These compounds were then mixed with silica and incorporated into the ABS matrix using standard processing methods. The resulting systems exhibited changes in their physicochemical and mechanical characteristics. Several of the obtained composites (e.g., modified with VT:6STYR) had an increase in the contact angle of over 20° resulting in a hydrophobic surface. The addition of modifiers also prevented a decrease in rheological parameters regardless of the amount of filler added. In addition, comprehensive tests of the thermal decomposition of the obtained composites were performed and an attempt was made to precisely characterize the decomposition of ABS using FT-IR and optical microscopy, which allowed us to determine the impact of individual groups on the thermal stability of the system.

10.
Talanta ; 272: 125767, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428128

RESUMEN

Herein, polysiloxane-based aggregation-induced emission (AIE) polymers and rubbers were prepared which display interesting multi-stimuli responsive fluorescence. TPE-modified polydimethylsiloxanes (PDMS-TPE) as polysiloxane-based AIE polymers were synthesized through Heck reaction of bromo-substituted tetraphenylethene (TPE-Br) and vinyl polysiloxanes. As expected, TPE moiety endows the modified polysiloxane with typical AIE behavior. However, limited by the long polymer chains, the aggregation process of PDMS-TPE shows obvious differences compared with the small molecule TPE-Br. The fluorescence of PDMS-TPE in THF/H2O starts to increase when the H2O fraction (fw) is 70% while TPE-Br is nearly non-luminous until the fw is up to 99%. The fluorescence intensity ratio (I/I0) of PDMS-TPE in the aggregated state and dispersed state is over 1300, greater than that of TPE-Br (I/I0 = 380). More importantly, the exceptional thermal motion of Si-O-Si chains and AIE characteristic of TPE moiety work together, enabling PDMS-TPE to show specific temperature-dependent fluorescence with a wider response range of room temperature to 190°C, which is distinguished from TPE-Br. And such fluorescence responsiveness possess good fatigue-resistance. Furthermore, fluorescent silicone rubbers, r-PDMS-TPE were prepared by using PDMS-TPE as additive of the base gum. They display interesting solvent-controllable fluorescence and higher tensile strength (4.42 MPa) than the control sample without TPE component (1.96 MPa). Notably, a unique stretching-enhanced emission (SEE) phenomenon is observed from these TPE-modified silicone rubbers. When being stretched, the rubbers' fluorescent emission intensity could increase by 143%.

11.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475391

RESUMEN

The post-heat mechanical property is one of the important indices for the fire-resistance evaluation of fiber-reinforced polymers. At present, the primary approach to improving the post-heat mechanical property of a material involves incorporating inorganic fillers; yet, the enhancement is limited, and is accompanied by a reduction in room-temperature performance and processability. This study prepares glass-fiber-reinforced composites with elevated mechanical properties after heat through utilizing two variants of epoxy resins modified with polysiloxane, phenolic resin, kaolin, and graphite. In comparison to the phenolic samples, the phenylpropylsiloxane-modified epoxy resulted in a 115% rise in post-heat flexural strength and a 70% increase in the room-temperature flexural strength of phenolic composites. On the other hand, dimethylsiloxane-modified epoxy leads to a 117% improvement in post-heat flexural strength but a 44% decrease in the room-temperature flexural strength of phenolic composites. Macroscopic/microscopic morphologies and a residual structure model of the composites after heat reveal that, during high temperature exposure, the pyrolysis products of polysiloxane promote interactions between carbon elements and fillers, thus preserving more residues and improving the dimensional stability as well as the density of materials. Consequently, a notable enhancement is observed in both the post-heat flexural strength and the mass of carbon residue after the incorporation of polysiloxane and fillers into the materials. The pyrolysis products of polysiloxane-modified epoxy play a vital role in enhancing the post-heat flexural strength by promoting carbon retention, carbon fixation, and interactions with fillers, offering novel pathways for the development of advanced composites with superior fire-resistance properties.

12.
Anal Chim Acta ; 1297: 342330, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38438225

RESUMEN

Cellular micro-environment analysis via fluorescence probe has become a powerful method to explore the early-stage cancer diagnosis and pathophysiological process of relevant diseases. The polarity change of intracellular lipid droplets (LDs) is closely linked with disorders or diseases, which result in various physiological and pathological processes. However, the efficient design strategy for lipid droplet polarity probes with high sensitivity is lacking. To overcome this difficulty, two kinds of LDs-targeting and polarity-sensitive fluorescent probes containing carbazole and siloxane groups were rationally designed and synthesized. With the carbazole-based rotor and bridge-like siloxanes, two probes (P1 and P2) behave high sensitivity to polarity changes and show different fluorescent intensity in normal and cancer cells. Notably, polysiloxanes groups promoted the response sensitivity of the probes dramatically for the polymeric microenvironment. In addition, due to the polarity changes of LDs in cancer cells, the distinct fluorescent intensities in different channels of laser scanning confocal microscope were observed between NHA cell and U87 cells. This work could offer an opportunity to monitor the dynamic behaviors of LDs and further provide a powerful tool to be potentially applied in the early-stage diagnosis of cancer.


Asunto(s)
Gotas Lipídicas , Neoplasias , Polímeros , Siloxanos , Carbazoles , Colorantes Fluorescentes , Neoplasias/diagnóstico por imagen
14.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399843

RESUMEN

Polysiloxane with multiple acryloxyl groups at the terminal site of the polymer chain was synthesized by the condensation reaction between hydroxyl-terminated polysiloxane and acryloyl chloride and used to improve the cross-linking density of UV-curable silicone materials initiated from dual acryloxy-terminated symmetric polysiloxane or single acryloxy-terminated asymmetric polysiloxane with the mixture of Irgacure 1173 and Irgacure 184 at a mass ratio of 1:1 as the photoinitiator. The effects of factors such as initiator composition, UV irradiation time, structure, and molecular weight of linear dual acryloxy-terminated or single acryloxy-terminated asymmetric siloxane oligomers on the gelation yield, thermal properties, water absorption, and water contact angle of UV-cured film were investigated. The synthesized cross-linking density modifier can be copolymerized with acryloxy-functionalized linear polysiloxanes under the action of a photoinitiator to increase the cross-link density of UV-cured products effectively. Both linear dual acryloxy-terminated or single acryloxy-terminated asymmetric siloxane oligomers can be copolymerized with cross-link density modifiers within 20 s of UV irradiation. The gelation yields of the UV-cured products obtained from the dual acryloxy-terminated siloxane oligomers were greater than 85%, and their surface water contact angles increased from 72.8° to 95.9° as the molecular weight of the oligomers increased. The gelation yields of UV-cured products obtained from single acryloxy-terminated asymmetric siloxane oligomers were less than 80%, and their thermal stabilities were inferior to those obtained from the dual acryloxy-terminated siloxane oligomers. However, the water contact angles of UV-cured products obtained from these single acryloxy-terminated asymmetric siloxane oligomers were all greater than 90°.

15.
J Colloid Interface Sci ; 661: 307-316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301468

RESUMEN

Despite the advantages of easy moulding and excellent mechanical properties, there are still some shortcomings with polypropylene (PP) such as high flammability and poor ultra-violet (UV) resistance. In this work, modified zinc oxide (mZnO) was prepared by reacting zinc oxide nanoparticles (ZnO) with polysiloxanes, and the effect of mZnO on the effectiveness of intumescent flame-retardant and on the UV aging resistance of polypropylene were investigated. By introducing 16 wt% (intumescent flame-retardant /mZnO) and 0.3 wt% maleic anhydride-grafted PP (MAH-g-PP), the limiting oxygen index increased to 32.7 %, and passed UL-94V-0 rating. In comparison to the controls, the peak heat release rate and the peak smoke release rate were 88.5 % and 80 % lower, respectively. In addition, PP samples showed improved mechanical properties, with a 5 % increase in tensile properties compared to the pure PP sample. After 100 h of UV irradiation, the surface of the samples was relatively flat and smooth, and the carbonyl index decreased from 81.1 of neat PP to 26.7. PP composites with 100 h aging treatment still had excellent flame retardancy and mechanical properties. The results showed that mZnO was effective in improving the flame retardancy, mechanical properties and light aging tolerance of PP. This study provides a novel approach to fabricate long-life flame-retardant PP composites with low additive content.

16.
J Sep Sci ; 47(1): e2300804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234022

RESUMEN

The main goal of this work is to expand the availability of chiral columns for the analysis of agrochemicals by gas chromatography. A broader offer of chiral stationary phases would allow shifting toward enantioselective analytical techniques environmentally more friendly for those compounds. We prepared seven chiral capillary columns based on derivatives of either, ß-cyclodextrin or γ-cyclodextrins dissolved at high concentrations, in two typical polysiloxanes with different polarities, demonstrating not only the significance of the chiral selector but also of the polymer solvent for achieving adequate enantioseparation of some agrochemicals. The enantiorecognition ability of each column was evaluated with 20 volatile and semivolatile agrochemicals, possessing one or two chiral centers. Besides, to elute more polar agrochemicals, as well as to enhance enantioselectivity, three derivatization procedures targeting the carboxyl and/or amine group were evaluated. The results revealed that the prepared column consisting of octakis(2,3-di-O-acetyl-6-O-tertbutyldimethylsilyl)-γ-cyclodextrin dissolved in (14%-cyanopropyl-phenyl)-86%-methyl-polysiloxane provides the broadest enantiorecognition capacity. This column allowed the enantioseparation of seventeen chiral agrochemicals, including metalaxyl, furalaxyl, and four imidazolinones, which were not enantioseparated in the remaining columns. To the best of our knowledge, glufosinate, fluorochloridone, fenarimol, furalaxyl, and four imidazolinones were enantioseparated by gas chromatography for the first time.

17.
Heliyon ; 9(12): e22877, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058448

RESUMEN

The combustible defects of polyamide 6 (PA6), especially the flammable melt-dripping behavior, have greatly limited its application in some particular fields. In this work, a halogen-free hyperbranched polysiloxane (PBDSi) containing DOPO and Schiff base was designed via Michael's addition reaction and dehydration-condensation reaction. Results showed that the char yield (Yc) of PBDSi attained 37.9 wt%, confirming the satisfactory charring behavior of PBDSi for preparing flame-retardant PA6. Just by adding 3 wt% of PBDSi, the serious melt droplets of PA6 were suppressed effectively. The prepared PA6/PBDSi-3 with 5 wt% of PBDSi could achieve the highest value of limited oxygen index (LOI) of 27.2 %, while that of PA6 is 21.0 %. Meanwhile, PA6/PBDSi-3 obtained an apparent reduction in the peak heat release rate (PHRR) value of 31.1 % compared with pure PA6. The cooperated effect of DOPO, Schiff base, and polysiloxane that contributed to generating a silicon-phosphorous-rich char layer and releasing incombustible volatiles that were determined to be the essential factor for the improved fire safety of PA6/PBDSi were explored intensively. Inspiringly, PA6/PBDSi composites exhibited a slight mechanical loss concerning PA6, overcoming the great challenge of developing additive flame-retardant materials to balance mechanical properties and fire safety.

18.
Electrophoresis ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37916661

RESUMEN

In this work, brush-type chiral stationary phases (CSPs) with O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinidine (DIPPCQD-brush/-SH) and O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinine (DIPPCQN-brush/-SH) were prepared as benchmarks for comparison with new corresponding polymeric CSPs with more stable bonding chemistry. These polymeric CSPs were prepared by coating a thin poly(3-mercaptopropyl)-methylsiloxane film together with the chiral selector onto vinyl-modified silica. In a second step, immobilization of the quinine/quinidine derivatives as well as cross-linking of the polysiloxane film to the vinyl-silica is achieved by a double thiol-ene click reaction. The polymeric CSPs exhibited similar enantioselectivity as the corresponding brush phases, but showed lower chromatographic efficiencies. Chiral acidic substances were separated into enantiomers (e.g., N-protected amino acids, herbicides like dichlorprop) in accordance with an enantioselective anion-exchange process. Oxidation of residual thiol groups of the polymer DIPPCQN-CSP introduced sulfonic acid co-ligands on the silica surface, which resulted in greatly reduced retention times. Acting as immobilized counterions, they allowed to reduce the concentration of counterions in the mobile phase, which is favorable for liquid chromatography (LC)-electrospray ionization-mass spectrometry application. Ibuprofen showed a single peak under ambient column temperature. However, application of cryogenic cooling of the column enabled to achieve baseline separation at -20°C column temperature. It can be explained by an enthalpically dominated separation, which leads to an increase in separation factors when the temperature is reduced. While it is quite uncommon to work at subzero degree column temperature, this work illustrates the potential to exploit such temperature regime for optimization of LC enantiomer separations.

19.
Stud Health Technol Inform ; 308: 245-252, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38007747

RESUMEN

Polysiloxane is widely used in biomedical applications because of its good biocompatibility and excellent micro and nano-scale processability. Using PubMed and Citex's data analysis platform, this paper examines polysiloxane research and compares its development history from 2002-01 to 2021-12. Research hotspots, keyword analysis, and the number of papers published on polysiloxane in biomedicine are used in this study to analyze and discuss the current status of polysiloxane research in biomedicine. Over the last twenty years, there has been a significant surge in the number of publications related to the use of polysiloxane in biomedicine. This trend highlights the growing intersection and collaboration between the fields of polymeric material science and biomedical disciplines. Therefore, statistics about the number of papers on polysiloxane and the frequency of hot words are valuable resources for biomedical research and development.


Asunto(s)
Investigación Biomédica , Siloxanos , Bibliometría , Publicaciones , PubMed
20.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37835994

RESUMEN

Organosilicon polymers (silicones) are an important part of material chemistry and a well-established commercial product segment with a wide range of applications. Silicones are of enduring interest due to their unique properties and utility. Recently, new application areas for silicone-based materials have emerged, such as stretchable electronics, wearable stress sensors, smart coatings, and soft robotics. For this reason, research interest over the past decade has been directed towards new methods of crosslinking and increasing the mechanical strength of polyorganosiloxanes. The introduction of self-healing mechanisms may be a promising alternative for such high-value materials. This approach has gained both growing research interest and a rapidly expanding range of applications. Inherent extrinsic and intrinsic self-healing methods have been used in the self-healing of silicones and have resulted in significant advances in polymer composites and coatings, including multicomponent systems. In this review, we present a summary of research work dedicated to the synthesis and applications of self-healing hybrid materials containing polysiloxane segments, with a focus on antimicrobial and antifouling coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA