Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Electrophoresis ; 39(22): 2877-2883, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29935006

RESUMEN

One of the main problems of the remote complex sample analysis instrumentation is that such systems are susceptible to temperature fluctuations. Temperature regulation is energetically ineffective, and it is not used in most of the field portable analytical systems. Separations performed in a changing temperature environment provide electropherograms with considerable baseline fluctuations, resulting in significant errors in detection and integration of the peaks. This paper describes electropherogram baseline compensation that is suitable for the capillary electrophoresis-contactless conductivity detection analytical method. The baseline compensation utilizes linear or polynomial data processing methods, and can be programmed in-line using simple microcontroller, or on-line and off-line in data acquisition software. This method is targeted for field portable and autonomous analytical systems that are utilized in a fluctuating environment.


Asunto(s)
Electroforesis Capilar/instrumentación , Procesamiento de Señales Asistido por Computador , Temperatura , Algoritmos , Conductividad Eléctrica , Electroforesis Capilar/métodos , Diseño de Equipo
2.
J Aerosol Sci ; 104: 66-78, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28626243

RESUMEN

Efficient microconcentration of aerosols to a substrate is essential for effectively coupling the collected particles to microscale optical spectroscopies such as laser-induced or spark microplasma, or micro-Raman or infrared spectroscopies. In this study, we present detailed characterization of a corona-based aerosol microconcentration technique developed previously (Diwakar and Kulkarni, 2012). The method involves two coaxial electrodes separated by a few millimeters, one held at a high electrical potential and the other grounded. The particles are collected on the collection (i.e., ground) electrode from a coaxial aerosol flow in a one-step charge-and-collect scheme using corona discharge and electrical precipitation between the two electrodes. Performance of the corona microconcentration method was determined experimentally by measuring collection efficiency, wall losses, and particle deposition density. An intrinsic spectroscopic sensitivity was experimentally determined for the aerosol microconcentrator. Using this sensitivity, we show that corona-based microconcentration is much superior to alternative methods, including filtration, focused impaction using aerodynamic lens, and spot collection using condensational growth. The method offers unique advantages for compact, hand-held aerosol analytical instrumentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA