Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071346

RESUMEN

Appendage shape is formed during development (and re-formed during regeneration) according to spatial and temporal cues that orchestrate local cellular morphogenesis. The caudal fin is the primary appendage used for propulsion in most fish species, and exhibits a range of distinct morphologies adapted for different swimming strategies, however the molecular mechanisms responsible for generating these diverse shapes remain mostly unknown. In zebrafish, caudal fins display a forked shape, with longer supportive bony rays at the periphery and shortest rays at the center. Here, we show that a premature, transient pulse of sonic hedgehog a (shha) overexpression during late embryonic development results in excess proliferation and growth of the central rays, causing the adult caudal fin to grow into a triangular, truncate shape. Both global and regional ectopic shha overexpression are sufficient to alter fin shape, and forked shape may be rescued by subsequent treatment with an antagonist of the canonical Shh pathway. The induced truncate fins show a decreased fin ray number and fail to form the hypural diastema that normally separates the dorsal and ventral fin lobes. While forked fins regenerate their original forked morphology, truncate fins regenerate truncate, suggesting that positional memory of the fin rays can be permanently altered by a transient treatment during embryogenesis. Ray finned fish have evolved a wide spectrum of caudal fin morphologies, ranging from truncate to forked, and the current work offers insights into the developmental mechanisms that may underlie this shape diversity.

2.
J Bioinform Comput Biol ; 22(3): 2450011, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39036846

RESUMEN

Recent computational modeling of early fruit fly (Drosophila) development has characterized the degree to which gene regulation networks can be robust to natural variability. In the first few hours of development, broad spatial gradients of maternally derived transcription factors activate embryonic gap genes. These gap patterns determine the subsequent segmented insect body plan through pair-rule gene expression. Gap genes are expressed with greater spatial precision than the maternal patterns. Computational modeling of the gap-gap regulatory interactions provides a mechanistic understanding for this robustness to maternal variability in wild-type (WT) patterning. A long-standing question in evolutionary biology has been how a system which is robust, such as the developmental program creating any particular species' body plan, is also evolvable, i.e. how can a system evolve or speciate, if the WT form is strongly buffered and protected? In the present work, we use the WT model to explore the breakdown of such Waddington-type 'canalization'. What levels of variability will push the system out of the WT form; are there particular pathways in the gene regulatory mechanism which are more susceptible to losing the WT form; and when robustness is lost, what types of forms are most likely to occur (i.e. what forms lie near the WT)? Manipulating maternal effects in several different pathways, we find a common gap 'peak-to-step' pattern transition in the loss of WT. We discuss these results in terms of the evolvability of insect segmentation, and in terms of experimental perturbations and mutations which could test the model predictions. We conclude by discussing the prospects for using continuum models of pattern dynamics to investigate a wider range of evo-devo problems.


Asunto(s)
Redes Reguladoras de Genes , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , Drosophila/genética , Drosophila/embriología , Simulación por Computador , Evolución Molecular , Evolución Biológica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Dev Cell ; 59(16): 2239-2253.e9, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38788714

RESUMEN

The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.


Asunto(s)
Ambystoma mexicanum , Cromatina , Extremidades , Proteínas de Homeodominio , Regeneración , Animales , Regeneración/genética , Regeneración/fisiología , Cromatina/metabolismo , Cromatina/genética , Ambystoma mexicanum/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Histonas/metabolismo , Histonas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Bioessays ; 46(2): e2300156, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214693

RESUMEN

The Wnt family of developmental regulators were named after the Drosophila segmentation gene wingless and the murine proto-oncogene int-1. Homology between these two genes connected oncogenesis to cell-cell signals in development. I review how wingless was initially characterized, and cloned, as part of the quest to identify developmental cell-to-cell signals, based on predictions of the Positional Information Model, and on the properties of homeotic and segmentation gene mutants. The requirements and cell-nonautonomy of wingless in patterning multiple embryonic and adult structures solidified its status as a candidate signaling molecule. The physical location of wingless mutations and transcription unit defined the gene and its developmental transcription pattern. When the Drosophila homolog of int-1 was then isolated, and predicted to encode a secreted proto-oncogene homolog, it's identity to the wingless gene confirmed that a developmental cell-cell signal had been identified and connected cancer to development.


Asunto(s)
Proteínas de Drosophila , Ratones , Animales , Proteína Wnt1/genética , Proteínas de Drosophila/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Drosophila/genética , Oncogenes , Regulación del Desarrollo de la Expresión Génica
5.
Quant Plant Biol ; 4: e14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034417

RESUMEN

In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.

6.
Front Cell Dev Biol ; 11: 1151348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091979

RESUMEN

Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.

7.
Curr Top Dev Biol ; 153: 347-380, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967200

RESUMEN

Regeneration abilities are widespread among animals and select species can restore any body parts removed by wounds that sever the major body axes. This capability of whole-body regeneration as exemplified in flatworm planarians, Acoels, and Cnidarians involves initial responses to injury, the assessment of wound site polarization, determination of missing tissue and programming of blastema fate, and patterned outgrowth to restore axis content and proportionality. Wnt signaling drives many shared and conserved aspects of the biology of whole-body regeneration in the planarian species Schmidtea mediterranea and Dugesia japonica, in the Acoel Hofstenia miamia, and in Cnidarians Hydra and Nematostella. These overlapping mechanisms suggest whole-body regeneration might be an ancestral property across diverse animal taxa.


Asunto(s)
Hydra , Planarias , Animales , Vía de Señalización Wnt , Planarias/fisiología
8.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510843

RESUMEN

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Morfogénesis/fisiología
9.
Dev Biol ; 488: 11-29, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35523320

RESUMEN

Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.


Asunto(s)
Planarias , Animales , Tipificación del Cuerpo/genética , Fibras Musculares Esqueléticas/metabolismo , Planarias/fisiología , ARN Helicasas , Interferencia de ARN , Transducción de Señal/genética , Proteínas Wnt/metabolismo
10.
Elife ; 112022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363606

RESUMEN

For over 40 years, the Bicoid-hunchback (Bcd-hb) system in the fruit fly embryo has been used as a model to study how positional information in morphogen concentration gradients is robustly translated into step-like responses. A body of quantitative comparisons between theory and experiment have since questioned the initial paradigm that the sharp hb transcription pattern emerges solely from diffusive biochemical interactions between the Bicoid transcription factor and the gene promoter region. Several alternative mechanisms have been proposed, such as additional sources of positional information, positive feedback from Hb proteins or out-of-equilibrium transcription activation. By using the MS2-MCP RNA-tagging system and analysing in real time, the transcription dynamics of synthetic reporters for Bicoid and/or its two partners Zelda and Hunchback, we show that all the early hb expression pattern features and temporal dynamics are compatible with an equilibrium model with a short decay length Bicoid activity gradient as a sole source of positional information. Meanwhile, Bicoid's partners speed-up the process by different means: Zelda lowers the Bicoid concentration threshold required for transcriptional activation while Hunchback reduces burstiness and increases the polymerase firing rate.


Asunto(s)
Proteínas de Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo
11.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297964

RESUMEN

Tissue identity determination is crucial for regeneration, and the planarian anteroposterior (AP) axis uses positional control genes expressed from body wall muscle to determine body regionalization. Canonical Wnt signaling establishes anterior versus posterior pole identities through notum and wnt1 signaling, and two Wnt/FGFRL signaling pathways control head and trunk domains, but their downstream signaling mechanisms are not fully understood. Here, we identify a planarian Src homolog that restricts head and trunk identities to anterior positions. src-1(RNAi) animals formed enlarged brains and ectopic eyes and also duplicated trunk tissue, similar to a combination of Wnt/FGFRL RNAi phenotypes. src-1 was required for establishing territories of positional control gene expression in Schmidtea mediterranea, indicating that it acts at an upstream step in patterning the AP axis. Double RNAi experiments and eye regeneration assays suggest src-1 can act in parallel to at least some Wnt and FGFRL factors. Co-inhibition of src-1 with other posterior-promoting factors led to dramatic patterning changes and a reprogramming of Wnt/FGFRLs into controlling new positional outputs. These results identify src-1 as a factor that promotes robustness of the AP positional system that instructs appropriate regeneration.


Asunto(s)
Planarias , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Planarias/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética
12.
Stem Cell Res Ther ; 13(1): 62, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130972

RESUMEN

BACKGROUND: Structural regeneration of amputated appendages by blastema-mediated, epimorphic regeneration is a process whose mechanisms are beginning to be employed for inducing regeneration. While epimorphic regeneration is classically studied in non-amniote vertebrates such as salamanders, mammals also possess a limited ability for epimorphic regeneration, best exemplified by the regeneration of the distal mouse digit tip. A fundamental, but still unresolved question is whether epimorphic regeneration and blastema formation is exhaustible, similar to the finite limits of stem-cell mediated tissue regeneration. METHODS: In this study, distal mouse digits were amputated, allowed to regenerate and then repeatedly amputated. To quantify the extent and patterning of the regenerated digit, the digit bone as the most prominent regenerating element in the mouse digit was followed by in vivo µCT. RESULTS: Analyses revealed that digit regeneration is indeed progressively attenuated, beginning after the second regeneration cycle, but that the pattern is faithfully restored until the end of the fourth regeneration cycle. Surprisingly, when unamputated digits in the vicinity of repeatedly amputated digits were themselves amputated, these new amputations also exhibited a similarly attenuated regeneration response, suggesting a systemic component to the amputation injury response. CONCLUSIONS: In sum, these data suggest that epimorphic regeneration in mammals is finite and due to the exhaustion of the proliferation and differentiation capacity of the blastema cell source.


Asunto(s)
Amputación Quirúrgica , Cicatrización de Heridas , Animales , Diferenciación Celular , Extremidades , Mamíferos , Ratones , Cicatrización de Heridas/fisiología
13.
FASEB Bioadv ; 4(1): 22-28, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024570

RESUMEN

Nerve dependence in regeneration has been established more than 200 years ago but the mechanisms by which nerves are necessary to regeneration remain to be fully elucidated. Aside from their direct impact in stimulating cellular growth, nerves also have a role on the establishment of body polarities (antero-posterior and dorso-ventral patterns) and this has been particularly well studied in nereid annelid worms. Nereids can regenerate appendages (parapodia) and the tail (body segments). In both parapodia and tail regeneration, the presence of the nerve cord is necessary to the establishment of body polarities. In this review, we will detail the experimental procedures which have been conducted in nereids to elucidate the role of the nerve cord in the establishment of the antero-posterior and dorso-ventral polarities. Most of the studies reported here were published several decades ago and based on anatomical and histological analyses; this review should constitute a knowledgebase and an inspiration for needed modern-time explorations at the molecular levels to elucidate the impact of the nervous system in the acquisition of body polarities.

14.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200272, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34743598

RESUMEN

Turing patterns have morphed from mathematical curiosities into highly desirable targets for synthetic biology. For a long time, their biological significance was sometimes disputed but there is now ample evidence for their involvement in processes ranging from skin pigmentation to digit and limb formation. While their role in developmental biology is now firmly established, their synthetic design has so far proved challenging. Here, we review recent large-scale mathematical analyses that have attempted to narrow down potential design principles. We consider different aspects of robustness of these models and outline why this perspective will be helpful in the search for synthetic Turing-patterning systems. We conclude by considering robustness in the context of developmental modelling more generally. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Asunto(s)
Modelos Biológicos , Biología Sintética , Morfogénesis
15.
R Soc Open Sci ; 8(10): 211361, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34659787

RESUMEN

In many scientific and technological contexts, we have only a poor understanding of the structure and details of appropriate mathematical models. We often, therefore, need to compare different models. With available data we can use formal statistical model selection to compare and contrast the ability of different mathematical models to describe such data. There is, however, a lack of rigorous methods to compare different models a priori. Here, we develop and illustrate two such approaches that allow us to compare model structures in a systematic way by representing models as simplicial complexes. Using well-developed concepts from simplicial algebraic topology, we define a distance between models based on their simplicial representations. Employing persistent homology with a flat filtration provides for alternative representations of the models as persistence intervals, which represent model structure, from which the model distances are also obtained. We then expand on this measure of model distance to study the concept of model equivalence to determine the conceptual similarity of models. We apply our methodology for model comparison to demonstrate an equivalence between a positional-information model and a Turing-pattern model from developmental biology, constituting a novel observation for two classes of models that were previously regarded as unrelated.

16.
Cells ; 10(9)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34571821

RESUMEN

We know little about the control of positional information (PI) during axolotl limb regeneration, which ensures that the limb regenerates exactly what was amputated, and the work reported here investigates this phenomenon. Retinoic acid administration changes the PI in a proximal direction so that a complete limb can be regenerated from a hand. Rather than identifying all the genes altered by RA treatment of the limb, we have eliminated many off-target effects by using retinoic acid receptor selective agonists. We firstly identify the receptor involved in this respecification process as RARα and secondly, identify the genes involved by RNA sequencing of the RARα-treated blastemal mesenchyme. We find 1177 upregulated genes and 1403 downregulated genes, which could be identified using the axolotl genome. These include several genes known to be involved in retinoic acid metabolism and in patterning. Since positional information is thought to be a property of the cell surface of blastemal cells when we examine our dataset with an emphasis on this aspect, we find the top canonical pathway is integrin signaling. In the extracellular matrix compartment, we find a MMP and several collagens are upregulated; several cell membrane genes and secretory factors are also upregulated. This provides data for future testing of the function of these candidates in the control of PI during limb regeneration.


Asunto(s)
Ambystoma mexicanum/metabolismo , Extremidades/fisiología , Receptores de Ácido Retinoico/metabolismo , Regeneración/fisiología , Animales , Matriz Extracelular/metabolismo , Mesodermo/metabolismo , Mesodermo/fisiología , Transducción de Señal/fisiología , Tretinoina/metabolismo
17.
Cells ; 10(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201566

RESUMEN

Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.


Asunto(s)
Heterocromatina/metabolismo , Modelos Biológicos , Actomiosina/metabolismo , Animales , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Pollos , Momento de Replicación del ADN , Desarrollo Embrionario/genética , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos/genética , Ratas
18.
J Exp Bot ; 72(19): 6739-6745, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34324634

RESUMEN

Since its discovery by F.A.L Clowes, extensive research has been dedicated to identifying the functions of the quiescent center (QC). One of the earliest hypotheses was that it serves a key role in regeneration of the root meristem. Recent works provided support for this hypothesis and began to elucidate the molecular mechanisms underlying this phenomenon. There are two scenarios to consider when assessing the role of the QC in regeneration: one, when the damage leaves the QC intact; and the other, when the QC itself is destroyed. In the first scenario, multiple factors are recruited to activate QC cell division in order to replace damaged cells, but whether the QC has a role in the second scenario is less clear. Both using gene expression studies and following the cell division pattern have shown that the QC is assembled gradually, only to appear as a coherent identity late in regeneration. Similar late emergence of the QC was observed during the de novo formation of the lateral root meristem. These observations can lead to the conclusion that the QC has no role in regeneration. However, activities normally occurring in QC cells, such as local auxin biosynthesis, are still found during regeneration but occur in different cells in the regenerating meristem. Thus, we explore an alternative hypothesis, that following destruction of the QC, QC-related gene activity is temporarily distributed to other cells in the regenerating meristem, and only coalesce into a distinct cell identity when regeneration is complete.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , División Celular , Meristema , Organogénesis de las Plantas , Raíces de Plantas
19.
J Theor Biol ; 526: 110809, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34119496

RESUMEN

Elements within biological systems interact and frequently self-organize from initially disordered states into highly structured patterns. The local self-activation and lateral inhibition mechanism, derived from the coupling between two reacting and diffusing chemicals, has been believed to be one of the main causes for biological pattern formation. Graded positional information can be produced by the limited diffusion of one single signaling molecule through cell populations with no pre-patterns being required. We demonstrate, using multiscale computations, that spontaneous symmetry breaking can be driven within expanding and non-expanding cell populations, without local self-enhancement of activators and long-range inhibition. Instead, cells can self-organize into structured gene patterns via a combination of timing gene expression in cells and the graded positional information which has been coupled to the gene expression. We show that the genetic symmetry breaking in expanding E. coli populations occurs at a critical colony size, which is independent of the cell doubling time but scales with the diffusion speed of the signaling molecule. We also show the quasi-3D structure of gene patterns, and observe that the wave length of periodic genetic stripes is in proportion to the genetic oscillation cycle time and in inverse proportion to cell doubling time. Our results provide insights into relevant biological development processes.


Asunto(s)
Escherichia coli , Transducción de Señal , Difusión
20.
Cells Dev ; 166: 203673, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34051671

RESUMEN

Lewis Wolpert was a brilliant and inspiring scientist who made hugely significant contributions which underpin and influence our understanding of developmental biology today. He spent his career interested in how the fertilised egg can give rise to the whole embryo (and ultimately the adult) with one head, two arms, two legs, all its organs and importantly how cells become different from each other and how they 'know' what to become. His ideas revolutionised the way developmental biology was perceived and also reinvigorated, in particular, the key question of how pattern formation in embryonic development is achieved. He published over 200 scientific articles and received many accolades over his career for his work and services to science in the UK. These included a CBE (Commander of the Order of the British Empire) from the Queen, being elected a Fellow of the Royal Society and a Fellow of the Royal Society of Literature. He was also a recipient of the Waddington Medal from the British Society for Developmental Biology and was awarded The Royal Society's top honour, the Royal Medal in 2018. Lewis was also a gifted teacher and communicator, including being the author of a textbook on developmental biology used around the world to train the next generation of developmental biologists. This contribution was recognised in 2003, by the award of the Viktor Hamburger Outstanding Educator Award from the Society of Developmental Biology in the USA. Lewis always enjoyed giving talks and lectures, having an infectious and persuasive enthusiasm coupled with a sharp sense of humour. He also published articles in popular science journals (aimed at the public) such as New Scientist, Scientific American and The Scientist. Lewis also wrote several popular science books. He was a passionate advocate for the public understanding of science and was the Chair of The Royal Society/Royal Institution/British Association for the Advancement of Science Committee for Public Understanding of Science (1994-1998). For this contribution he was awarded The Royal Society Michael Faraday Medal for "excellence in communicating science to UK audiences". He presented the prestigious Royal Institution Christmas Lectures in 1986 entitled 'Frankenstein's Quest: development of life'. These lectures, six in total, are presented by leading scientists and aimed at the general public and broadcast on national television. On a personal level, Lewis influenced all who came into contact with him, shaped his students and postdocs careers and instilled in them, and the community as whole, a life-long love of developmental biology.


Asunto(s)
Distinciones y Premios , Personal Docente , Humanos , Estudiantes , Estados Unidos , Escritura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA