Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Plant Biol ; 24(1): 838, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242995

RESUMEN

BACKGROUND: Potassium (K) is an essential nutrient for plant growth and development. Maize (Zea mays) is a widely planted crops in the world and requires a huge amount of K fertilizer. Arbuscular mycorrhizal fungi (AMF) are closely related to the K uptake of maize. Genetic improvement of maize K utilization efficiency will require elucidating the molecular mechanisms of maize K uptake through the mycorrhizal pathway. Here, we employed transcriptome and gene family analysis to elucidate the mechanism influencing the K uptake and utilization efficiency of mycorrhizal maize. METHODS AND RESULTS: The transcriptomes of maize were studied with and without AMF inoculation and under different K conditions. AM symbiosis increased the K concentration and dry weight of maize plants. RNA sequencing revealed that genes associated with the activity of the apoplast and nutrient reservoir were significantly enriched in mycorrhizal roots under low-K conditions but not under high-K conditions. Weighted gene correlation network analysis revealed that three modules were strongly correlated with K content. Twenty-one hub genes enriched in pathways associated with glycerophospholipid metabolism, glycerolipid metabolism, starch and sucrose metabolism, and anthocyanin biosynthesis were further identified. In general, these hub genes were upregulated in AMF-colonized roots under low-K conditions. Additionally, the members of 14 gene families associated with K obtain were identified (ARF: 38, ILK: 4, RBOH: 12, RUPO: 20, MAPKK: 89, CBL: 14, CIPK: 44, CPK: 40, PIN: 10, MYB: 174, NPF: 79, KT: 19, HAK/HKT/KUP: 38, and CPA: 8) from maize. The transcript levels of these genes showed that 92 genes (ARF:6, CBL:5, CIPK:13, CPK:2, HAK/HKT/KUP:7, PIN:2, MYB:26, NPF:16, RBOH:1, MAPKK:12 and RUPO:2) were upregulated with AM symbiosis under low-K conditions. CONCLUSIONS: This study indicated that AMF increase the resistance of maize to low-K stress by regulating K uptake at the gene transcription level. Our findings provide a genome-level resource for the functional assignment of genes regulated by K treatment and AM symbiosis in K uptake-related gene families in maize. This may contribute to elucidate the molecular mechanisms of maize response to low K stress with AMF inoculation, and provided a theoretical basis for AMF application in the crop field.


Asunto(s)
Micorrizas , Potasio , Simbiosis , Transcriptoma , Zea mays , Micorrizas/fisiología , Zea mays/genética , Zea mays/microbiología , Zea mays/metabolismo , Potasio/metabolismo , Simbiosis/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica
2.
Am J Physiol Renal Physiol ; 327(3): F373-F385, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38961847

RESUMEN

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to an increased risk in blood pressure elevation. The distal convoluted tubule (DCT) is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by inwardly rectifying K+ channels (Kir4.1/5.1); decrease in intracellular Cl-; activation of WNK4 and interaction and phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK); binding of calcium-binding protein 39 (cab39) adaptor protein to SPAK, leading to its trafficking to the apical membrane; and SPAK binding, phosphorylation, and activation of NCC. As kidney-specific with-no-lysine kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and long WNK1 (L-WNK1) and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice were not hyperkalemic. Although wild-type mice under low-dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in KS-WNK1, did not change under the low-K+ diet. Thus, in the absence of KS-WNK1, the transporter lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there was no formation of WNK bodies. These bodies were observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.NEW & NOTEWORTHY In this paper, we show that KS-WNK1 is a critical component of the distal convoluted tubule (DCT) K+ switch pathway. Its deletion results in an inability of the DCT to sense changes in plasma potassium. Absence of KS-WNK1 leads to abnormally high levels of WNK4 and L-WNK1 in the DCT, resulting in increased Na-Cl phosphorylation and function. Our data are consistent with KS-WNK1 targeting WNK4 and L-WNK1 to degradation.


Asunto(s)
Túbulos Renales Distales , Proteínas Serina-Treonina Quinasas , Miembro 3 de la Familia de Transportadores de Soluto 12 , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Masculino , Ratones , Túbulos Renales Distales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Potasio/metabolismo , Potasio/sangre , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética
3.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542340

RESUMEN

Auxin plays a crucial role in regulating root growth and development, and its distribution pattern under environmental stimuli significantly influences root plasticity. Under K deficiency, the interaction between K+ transporters and auxin can modulate root development. This study compared the differences in root morphology and physiological mechanisms of the low-K-tolerant maize inbred line 90-21-3 and K-sensitive maize inbred line D937 under K-deficiency (K+ = 0.2 mM) with exogenous NAA (1-naphthaleneacetic acid, NAA = 0.01 mM) treatment. Root systems of 90-21-3 exhibited higher K+ absorption efficiency. Conversely, D937 seedling roots demonstrated greater plasticity and higher K+ content. In-depth analysis through transcriptomics and metabolomics revealed that 90-21-3 and D937 seedling roots showed differential responses to exogenous NAA under K-deficiency. In 90-21-3, upregulation of the expression of K+ absorption and transport-related proteins (proton-exporting ATPase and potassium transporter) and the enrichment of antioxidant-related functional genes were observed. In D937, exogenous NAA promoted the responses of genes related to intercellular ethylene and cation transport to K-deficiency. Differential metabolite enrichment analysis primarily revealed significant enrichment in flavonoid biosynthesis, tryptophan metabolism, and hormone signaling pathways. Integrated transcriptomic and metabolomic analyses revealed that phenylpropanoid biosynthesis is a crucial pathway, with core genes (related to peroxidase enzyme) and core metabolites upregulated in 90-21-3. The findings suggest that under K-deficiency, exogenous NAA induces substantial changes in maize roots, with the phenylpropanoid biosynthesis pathway playing a crucial role in the maize root's response to exogenous NAA regulation under K-deficiency.


Asunto(s)
Deficiencia de Potasio , Plantones , Plantones/genética , Plantones/metabolismo , Zea mays/metabolismo , Deficiencia de Potasio/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Environ Sci Pollut Res Int ; 31(12): 18636-18655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351352

RESUMEN

The inland saline waters were continuously observed to have low potassium concentrations compared to their seawater counterpart of the same salinity. We hypothesize that the toxic effect of sulfate may manifest in low potassium saline (LPSW) waters compared to brackish water of the same salinity. Thus, LC50 trials were performed in GIFT (genetically improved farmed tilapia) fry (0.5 ± 0.02 g) to determine the acute sulfate toxicity in freshwater (FW, 0.5 g L-1), artificial seawater (ASW, 10 g L-1), and LPSW (10 g L-1). The median lethal concentrations (96h LC50) of sulfate ion in FW, LPSW, and ASW for the GIFT were 5.30 g L-1, 2.56 g L-1, and 2.98 g L-1, respectively. A second experiment was conducted for 21 days, exposing fish to a sub-lethal level of sulfate ion (SO42-) concentration (1000 mg L-1, one-fifth of FW LC50) with different types of waters (FW, freshwater, 0.5 g L-1; ASW, artificial seawater, 10 g L-1; LPSW, low potassium saline water, 10 g L-1) with and without sulfate inclusion to constitute the treatments as follows, (FW, FW + SO4, ASW, ASW + SO4, LPSW, LPSW + SO4). The effect of sulfate on GIFT reared in sulfate-rich potassium-deficient medium saline water was evaluated by focusing on the hematological adjustments, stress-induced oxidative damage, and osmoregulatory imbalances. The survival was not altered due to the sulfate concentration and K+ deficiency; however, there were significant changes in branchial NKA (Na+/K+-ATPase) activity and osmolality. The increase in NKA was highest in LPSW treatment, suggesting that internal ionic imbalance was triggered due to an interactive effect of sulfate and K+ deficiency. The cortisol levels showed a pronounced increase due to sulfate inclusion irrespective of K+ deficiency. The antioxidant enzymes, i.e., SOD (superoxide dismutase), catalase, GST (glutathione-S-transferase), and GPX (glutathione peroxidase), reflected a similar pattern of increment in the gills and liver of the LPSW + SO4 groups, suggesting a poor antioxidant status of the exposed group. The hepatic peroxidation status, i.e. TBARS (thiobarbituric acid reactive substances), and the peroxide values were enhanced due to both K+ deficiency and sulfate inclusion, suggesting a possible lipid peroxidation in the liver due to handling the excess sulfate anion concentration. The hematological parameters, including haemoglobin, total erythrocyte count, and hematocrit level, reduced significantly in the LPSW + SO4 group, indicating a reduced blood oxygen capacity due to the sulfate exposure and water potassium deficiency. The hepatic acetylcholine esterase activity was suppressed in all the treatments with sulfate inclusion, while the highest suppression was observed in the LPSW + SO4 group. Thus, it is concluded that sulfate-induced physiological imbalances manifest more in potassium-deficient water, indicating that environmental sulfate is more detrimental to inland saline water than freshwater or brackish water of the same salinity.


Asunto(s)
Cíclidos , Animales , Cíclidos/metabolismo , Antioxidantes , Potasio , Sulfatos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Aclimatación , Salinidad , Agua de Mar/química , Branquias/metabolismo
5.
Front Plant Sci ; 14: 1287843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046603

RESUMEN

Nitrate (NO3 -) and potassium (K+) are distributed in plants via short and long-distance transport. These two pathways jointly regulate NO3 - and K+ levels in all higher plants. The Arabidopsis thaliana transporter NPF7.3/NRT1.5 is responsible for loading NO3 - and K+ from root pericycle cells into the xylem vessels, facilitating the long-distance transport of NO3 - and K+ to shoots. In this study, we demonstrate a protein-protein interaction of NPF7.3/NRT1.5 with the proton pump AHA2 in the plasma membrane by split ubiquitin and bimolecular complementation assays, and we show that a conserved glycine residue in a transmembrane domain of NPF7.3/NRT1.5 is crucial for the interaction. We demonstrate that AHA2 together with NRT1.5 affects the K+ level in shoots, modulates the root architecture, and alters extracellular pH and the plasma membrane potential. We hypothesize that NRT1.5 and AHA2 interaction plays a role in maintaining the pH gradient and membrane potential across the root pericycle cell plasma membrane during K+ and/or NO3 - transport.

6.
Front Plant Sci ; 14: 1271933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38093993

RESUMEN

Introduction: At present, machine learning and image processing technology are widely used in plant disease diagnosis. In order to address the challenges of subjectivity, cost, and timeliness associated with traditional methods of diagnosing potassium deficiency in apple tree leaves. Methods: The study proposes a model that utilizes image processing technology and machine learning techniques to enhance the accuracy of detection during each growth period. Leaf images were collected at different growth stages and processed through denoising and segmentation. Color and shape features of the leaves were extracted and a multiple regression analysis model was used to screen for key features. Linear discriminant analysis was then employed to optimize the data and obtain the optimal shape and color feature factors of apple tree leaves during each growth period. Various machine-learning methods, including SVM, DT, and KNN, were used for the diagnosis of potassium deficiency. Results: The MLR-LDA-SVM model was found to be the optimal model based on comprehensive evaluation indicators. Field experiments were conducted to verify the accuracy of the diagnostic model, achieving high diagnostic accuracy during different growth periods. Discussion: The model can accurately diagnose whether potassium deficiency exists in apple tree leaves during each growth period. This provides theoretical guidance for intelligent and precise water and fertilizer management in orchards.

7.
Planta ; 258(5): 99, 2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37837470

RESUMEN

MAIN CONCLUSION: Integrated root phenotypes and transcriptome analysis have revealed key candidate genes responsible for maize root growth and development in potassium deficiency. Potassium (K) is a vital macronutrient for plant growth, but our understanding of its regulatory mechanisms in maize root system architecture (RSA) and K+ uptake remains limited. To address this, we conducted hydroponic and field trials at different growth stages. K+ deficiency significantly inhibited maize root growth, with metrics like total root length, primary root length, width and maximum root number reduced by 50% to 80% during early seedling stages. In the field, RSA traits exhibited maximum values at the silking stage but continued to decline thereafter. Furthermore, K deprivation had a pronounced negative impact on root morphology and RSA growth and grain yield. RNA-Seq analysis identified 5972 differentially expressed genes (DEGs), including 17 associated with K+ signaling, transcription factors, and transporters. Weighted gene co-expression network analysis revealed 23 co-expressed modules, with enrichment of transcription factors at different developmental stages under K deficiency. Several DEGs and transcription factors were predicted as potential candidate genes responsible for maize root growth and development. Interestingly, some of these genes exhibited homology to well-known regulators of root architecture or development in Arabidopsis, such as Zm00001d014467 (AtRCI3), Zm00001d011237 (AtWRKY9), and Zm00001d030862 (AtAP2/ERF). Identifying these key genes helps to provide a deeper understanding of the molecular mechanisms governing maize root growth and development under nutrient deficient conditions offering potential benefits for enhancing maize production and improving stress resistance through targeted manipulation of RSA traits in modern breeding efforts.


Asunto(s)
Deficiencia de Potasio , Zea mays , Zea mays/metabolismo , Deficiencia de Potasio/genética , Transcriptoma/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Genes Reguladores , Crecimiento y Desarrollo , Regulación de la Expresión Génica de las Plantas
8.
Plants (Basel) ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176837

RESUMEN

Plants can adapt to the spatial heterogeneity of soil nutrients by changing the morphology and architecture of the root system. Here, we explored the role of auxin in the response of sweetpotato roots to potassium (K+) deficiency stress. Two sweetpotato cultivars, Xushu 32 (low-K-tolerant) and Ningzishu 1 (low-K-sensitive), were cultured in low K+ (0.1 mmol L-1, LK) and normal K+ (10 mmol L-1, CK) nutrient solutions. Compared with CK, LK reduced the dry mass, K+ content, and K+ accumulation in the two cultivars, but the losses of Xushu 32 were smaller than those of Ningzishu 1. LK also affected root growth, mainly impairing the length, surface area, forks number, and crossings number. However, Xushu 32 had significantly higher lateral root length, density, and surface area than Ningzishu 1, closely related to the roots' higher indole-3-acetic acid (IAA) content. According to the qPCR results, Xushu 32 synthesized more IAA (via IbYUC8 and IbTAR2) in leaves but transported and accumulated in roots through polar transport (via IbPIN1, IbPIN3, and IbAUX1). It was also associated with the upregulation of auxin signaling pathway genes (IbIAA4 and IbIAA8) in roots. These results imply that IAA participates in the formation of lateral roots and the change in root architecture during the tolerance to low K+ stress of sweetpotato, thus improving the absorption of K+ and the formation of biomass.

9.
Front Plant Sci ; 14: 1131708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968411

RESUMEN

Potassium (K) is one of the most important macronutrients for plant development and growth. The influence mechanism of different potassium stresses on the molecular regulation and metabolites of apple remains largely unknown. In this research, physiological, transcriptome, and metabolite analyses were compared under different K conditions in apple seedlings. The results showed that K deficiency and excess conditions influenced apple phenotypic characteristics, soil plant analytical development (SPAD) values, and photosynthesis. Hydrogen peroxide (H2O2) content, peroxidase (POD) activity, catalase (CAT) activity, abscisic acid (ABA) content, and indoleacetic acid (IAA) content were regulated by different K stresses. Transcriptome analysis indicated that there were 2,409 and 778 differentially expressed genes (DEGs) in apple leaves and roots under K deficiency conditions in addition to 1,393 and 1,205 DEGs in apple leaves and roots under potassium excess conditions, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the DEGs were involved in flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction metabolite biosynthetic processes in response to different K conditions. There were 527 and 166 differential metabolites (DMAs) in leaves and roots under low-K stress as well as 228 and 150 DMAs in apple leaves and roots under high-K stress, respectively. Apple plants regulate carbon metabolism and the flavonoid pathway to respond to low-K and high-K stresses. This study provides a basis for understanding the metabolic processes underlying different K responses and provides a foundation to improve the utilization efficiency of K in apples.

10.
Front Plant Sci ; 14: 1112264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860901

RESUMEN

Potassium ions (K+) are important for plant growth and crop yield. However, the effects of K+ deficiency on the biomass of coconut seedlings and the mechanism by which K+ deficiency regulates plant growth remain largely unknown. Therefore, in this study, we compared the physiological, transcriptome, and metabolite profiles of coconut seedling leaves under K+-deficient and K+-sufficient conditions using pot hydroponic experiments, RNA-sequencing, and metabolomics technologies. K+ deficiency stress significantly reduced the plant height, biomass, and soil and plant analyzer development value, as well as K content, soluble protein, crude fat, and soluble sugar contents of coconut seedlings. Under K+ deficiency, the leaf malondialdehyde content of coconut seedlings were significantly increased, whereas the proline (Pro) content was significantly reduced. Superoxide dismutase, peroxidase, and catalase activities were significantly reduced. The contents of endogenous hormones such as auxin, gibberellin, and zeatin were significantly decreased, whereas abscisic acid content was significantly increased. RNA-sequencing revealed that compared to the control, there were 1003 differentially expressed genes (DEGs) in the leaves of coconut seedlings under K+ deficiency. Gene Ontology analysis revealed that these DEGs were mainly related to "integral component of membrane," "plasma membrane," "nucleus", "transcription factor activity," "sequence-specific DNA binding," and "protein kinase activity." Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the DEGs were mainly involved in "MAPK signaling pathway-plant," "plant hormone signal transduction," "starch and sucrose metabolism," "plant-pathogen interaction," "ABC transporters," and "glycerophospholipid metabolism." Metabolomic analysis showed that metabolites related to fatty acids, lipidol, amines, organic acids, amino acids, and flavonoids were generally down-regulated in coconut seedlings under K+ deficiency, whereas metabolites related to phenolic acids, nucleic acids, sugars, and alkaloids were mostly up-regulated. Therefore, coconut seedlings respond to K+ deficiency stress by regulating signal transduction pathways, primary and secondary metabolism, and plant-pathogen interaction. These results confirm the importance of K+ for coconut production, and provide a more in-depth understanding of the response of coconut seedlings to K+ deficiency and a basis for improving K+ utilization efficiency in coconut trees.

11.
Plant Physiol Biochem ; 196: 43-54, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693285

RESUMEN

To investigate K absorption and transport mechanisms by which pear rootstock genotypes respond to low-K stress, seedlings of a potassium-efficient pear rootstock, Pyrus ussuriensis, and a potassium-sensitive rootstock, Pyrus betulifolia, were supplied with different K concentrations in solution culture. Significant differences in the absorption rate, Vmax and Km between the genotypes indicate that P. ussuriensis acclimatizes more readily to low-K stress by regulating its absorption and internal cycling. We also found that the K content in the leaves of P. betulifolia was significantly lower than that of P. ussuriensis, and the proportion of K that was returned to root from shoot, relative to K that was transported from root to shoot, was greater in P. ussuriensis, which suggests that P. ussuriensis more efficiently recycles and reuses K. When the transcriptomes of the two genotypes were compared, we found that photosynthetic genes such as CABs (Chlorophyll a/b-binding proteins), Lhcbs (Photosystem II-related proteins), and Psas (Photosystem Ⅰ associated proteins) displayed lower expression in leaves of P. betulifolia under no-K conditions, but not in P. ussuriensis. However, in the root of P. ussuriensis, carbon metabolism-related genes SS (Sucrose Synthase), HK (HexoKinase) and SDH (Sorbitol Dehydrogenase) and components of the TCA cycle (Tricarboxylic Acid cycle) were differentially expressed, indicating that changes in C metabolism may provide energy for increased K+ cycling in these plants, thereby allowing it to better adapt to the low-K environment. In addition, exogenous supply of various sugars to the roots influenced K+ influx, supporting the conclusion that sugar metabolism in roots significantly affects K+ absorption in pear.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Potasio/metabolismo , Carbono , Clorofila A , Genotipo
12.
J Plant Physiol ; 280: 153861, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399835

RESUMEN

AKT1 is an inward-rectifying K+ channel that was originally thought to function only within a low-affinity K+ concentration range. However, the growth of an akt1 mutant of Arabidopsis was shown to be severely inhibited within a high-affinity range. This suggested that AKT1 may also be a high-affinity K+ transporter, but it remains unclear how the two modes of AKT1 coordinate to uptake K+. One gene (MeAKT2) encodes for a putatively inward-rectifying K+ channel and was isolated from cassava. Relative to other tissues, the MeAKT2 gene was expressed mainly in roots, and its transcriptional level was observed to be significantly increased under low-K+ conditions. Functional analyses were performed using a yeast expression system. When MeAKT2 was expressed alone in yeast cells, transgenic yeast could grow only in nutrient media supplied with >0.5 mM potassium. A yeast two-hybrid assay showed that both MeCIPK10 and MeCIPK12 clearly interacted with MeAKT2. Additionally, 0.05 mM K+ was sufficient for the growth of yeast cells co-expressing MeAKT2 with MeCIPK10, but also their co-expression significantly enhanced the growth capacity of yeast cells in the low range of K+ concentrations. Change in K+ uptake rate in co-transgenic yeast cells grown across a wide range of K+ concentrations showed that MeAKT2-mediated K+ uptake displayed a biphasic pattern, but also the switching from low-to high-affinity K+ uptake was regulated by CIPK10. This indicated that MeAKT2 functioned as a dual-affinity transporter to uptake K+ under both low- and high-affinity K+ conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Manihot , Proteínas de Arabidopsis/metabolismo , Manihot/genética , Manihot/metabolismo , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Potasio/metabolismo , Raíces de Plantas/metabolismo
13.
Phytochemistry ; 205: 113472, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36270412

RESUMEN

Potassium (K+) has vital physiological and metabolic functions in plants and its availability can impact tolerance to biotic and abiotic stress conditions. Limited studies have investigated the effect of K+ fertilization on soybean metabolism. Using integrated omics, ionomics and metabolomics, we investigated the field-grown Glycine max (soybean) response, after four K+ soil fertilization rates. Soybean leaf and pod tissue (valves and immature seeds) extracts were analysed by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Multivariate analyses (PCA-X&Y e O2PLS-DA) showed that 51 compounds of 19 metabolic pathways were regulated in response to K+ availability. Under very low potassium availability, soybean plants accumulated of Ca2+, Mg2+, Fe2+, Cu2+, and B in young and old leaves. Potassium fertilization upregulated carbohydrate, galactolipid, and flavonol glycoside biosynthesis in leaves and pod valves, while K+ deficient pod tissues showed increasing amino acids, oligosaccharides, benzoic acid derivatives, and isoflavones contents. Severely K+ deficient soils elicited isoflavones, coumestans, pterocarpans, and soyasaponins in trifoliate leaves, likely associated to oxidative and photodynamic stress status. Additionally, results demonstrate that L-asparagine content is higher in potassium deficient tissues, suggesting this compound as a biomarker of K+ deficiency in soybean plants. These results demonstrate that potassium soil fertilization did not linearly contribute to changes in specialised constitutive metabolites of soybean. Altogether, this work provides a reference for improving the understanding of soybean metabolism as dependent on K+ availability.


Asunto(s)
Glycine max , Potasio , Metabolómica
14.
Front Plant Sci ; 13: 1069181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561445

RESUMEN

In order to explore the effect of potassium (K) deficiency on nitrogen (N) metabolism in sweet potato (Ipomoea batatas L.), a hydroponic experiment was conducted with two genotypes (Xushu 32, low-K-tolerant; Ningzishu 1, low-K-sensitive) under two K treatments (-K, <0.03 mM of K+; +K, 5 mM of K+) in the greenhouse of Jiangsu Normal University. The results showed that K deficiency decreased root, stem, and leaf biomass by 13%-58% and reduced whole plant biomass by 24%-35%. Compared to +K, the amount of K and K accumulation in sweet potato leaves and roots was significantly decreased by increasing root K+ efflux in K-deficiency-treated plants. In addition, leaf K, N, ammonium nitrogen (NH4 +-N), or nitrate nitrogen (NO3 --N) in leaves and roots significantly reduced under K deficiency, and leaf K content had a significant quadratic relationship with soluble protein, NO3 --N, or NH4 +-N in leaves and roots. Under K deficiency, higher glutamate synthase (GOGAT) activity did not increase amino acid synthesis in roots; however, the range of variation in leaves was larger than that in roots with increased amino acid in roots, indicating that the transformation of amino acids into proteins in roots and the amino acid export from roots to leaves were not inhibited. K deficiency decreased the activity of nitrate reductase (NR) and nitrite reductase (NiR), even if the transcription level of NR and NiR increased, decreased, or remained unchanged. The NO3 -/NH4 + ratio in leaves and roots under K deficiency decreased, except in Ningzishu 1 leaves. These results indicated that for Ningzishu 1, more NO3 - was stored under K deficiency in leaves, and the NR and NiR determined the response to K deficiency in leaves. Therefore, the resistance of NR and NiR activities to K deficiency may be a dominant factor that ameliorates the growth between Xushu 32 and Ningzishu 1 with different low-K sensitivities.

15.
Biology (Basel) ; 11(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358259

RESUMEN

The aim of this study was to investigate the effect of a variable supply of potassium to culture medium on physiological and anatomical parameters (histological sections at the third internode) in basil, Ocimum basilicum. Thirty-four-day-old plants grown on basic nutrient medium were divided into four batches and grown on media with varying doses of potassium: 0.375 mM, 0.250 mM, 0.125 mM and 0 mM K+. After 64 days of culture, a final harvest was performed. The results showed that root and shoot growth in basil was decreased with decreased K+ concentration. This restriction was associated with a reduction in root elongation and leaf expansion, which was coupled with a decrease in chlorophyll and carotenoid contents. The estimation of electrolyte leakage reveals that this parameter was increased by potassium deficiency. With respect to total polyphenol and flavonoid contents, only the third leaf-stage extracts exhibited a decrease under low-K+ conditions. However, variability in response of phenolic compounds was recorded depending on the organ and the K+ concentration in the medium. Stem cross sections of potassium-deficient basil plants revealed a decrease in the diameter of these organs, which can be attributed to a restriction of the extent of different tissue territories (cortex and medulla), as well as by a reduction in cell size. These effects were associated with a decrease in the number of conducting vessels and an increase in the number of woody fibers.

16.
Plant Physiol Biochem ; 192: 243-251, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272191

RESUMEN

Potassium (K) is one of the most essential macronutrients for plants. However, K+ is deficient in some cultivated soils. Hence, improving the efficiencies of K+ uptake and utilization is important for agricultural production. Ca2+ signaling pathways play an important role in regulation of K+ acquisition. In the present study, BdCIPK31, a Calcineurin B-like protein interacting protein kinase (CIPK) from Brachypodium distachyon, was found to be a potential positive regulator in plant response to low K+ stress. The expression of BdCIPK31 was responsive to K+-deficiency, and overexpression of BdCIPK31 conferred enhanced tolerance to low K+ stress in transgenic tobaccos. Furthermore, BdCIPK31 was demonstrated to promote the K+ uptake in root, and could maintain normal root growth under K+-deficiency conditions. Additionally, BdCIPK31 functioned in scavenging excess reactive oxygen species (ROS), reduced oxidative damage caused by low K+ stress. Collectively, our study indicates that BdCIPK31 is a vital regulatory component in K+-acquisition system in plants.

17.
Plant Mol Biol ; 110(6): 531-543, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35962899

RESUMEN

Potassium (K) has an important effect on the growth and development of plants. Banana contains higher K content than many other fruits, and its plant requires more K nutrient in soil. However, the soil in the banana-producing areas in China is generally deficient in K. Therefore, understanding the mechanism of banana K absorption may assist in providing effective strategy to solve this problem. This study used two banana varieties with contrasting K tolerance, 'Guijiao No. 1' (low-K tolerant), and 'Brazilian banana' (low-K sensitive)to investigate K absorption mechanisms in response to low-K stress through miRNA and mRNA sequencing analysis. Under low-K condition, 'Guijiao No.1' showed higher plant height, dry weight, tissue K content and ATPase activity. Analysis of transcription factors showed that they were mainly in the types or classes of MYB, AP-EREBP, bHLH, etc. The sequencing results showed that 'Guijiao No. 1' had 776 differentially expressed genes (DEGs) and 27 differentially expressed miRNAs (DEMs), and 'Brazilian banana' had 71 DEGs and 14 DEMs between normal and low K treatments. RT-qPCR results showed that all miRNAs and mRNAs showed similar expression patterns with RNA-Seq and transcriptome. miRNA regulatory network was constructed by integrated analysis of miRNA-mRNA data. miR160a was screened out as a key miRNA, and preliminary functional validation was performed. Arabidopsis overexpressing miR160a showed reduced tolerance to low K, and inhibited phenotypic traits such as shorter root length, and reduced K accumulation. The overexpressed miR160a had a targeting relationship with ARF10 and ARF16 in Arabidopsis. These results indicate that miR160a may regulate K absorption in bananas through the auxin pathway. This study provides a theoretical basis for further study on the molecular mechanism of banana response to low potassium stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Musa , Musa/genética , Regulación de la Expresión Génica de las Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Arabidopsis/genética , Potasio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Suelo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética
18.
Plants (Basel) ; 11(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684162

RESUMEN

The high-affinity potassium transporters (HKT) mediate K+-Na+ homeostasis in plants. However, the function of enhancing low-potassium tolerance in sweet potato [Ipomoea batatas (L.) Lam.] remains unrevealed. In this study, a novel HKT transporter homolog IbHKT-like gene was cloned from sweet potato, which was significantly induced by potassium deficiency stress. IbHKT-like overexpressing transgenic roots were obtained from a sweet potato cultivar Xuzishu8 using an Agrobacterium rhizogenes-mediated root transgenic system in vivo. Compared with the CK, whose root cells did not overexpress the IbHKT-like gene, overexpression of the IbHKT-like gene protected cell ultrastructure from damage, and transgenic root meristem cells had intact mitochondria, endoplasmic reticulum, and Golgi dictyosomes. The steady-state K+ influx increased by 2.2 times in transgenic root meristem cells. Overexpression of the IbHKT-like gene also improved potassium content in the whole plant, which increased by 63.8% compared with the CK plants. These results could imply that the IbHKT-like gene, as a high-affinity potassium transporter gene, may play an important role in potassium deficiency stress responses.

19.
Front Plant Sci ; 13: 882359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557732

RESUMEN

Sheath rot disease is an emerging fungal disease in rice, whose infection causes severe yield loss. Sarocladium oryzae (S. oryzae) is the major causal agent. Previous study has demonstrated that rice deficiency in potassium (K) aggravates S. oryzae infection. However, the effects of S. oryzae infection on the nutrient-uptake process, endophyte communities, and hormone level of host plant under K-deficiency condition remain unclear, the mechanism of K mediated S. oryzae infection needs to be further study. The present study analyzed alterations in the endophytic community and nutrient-uptake process of host plants through an exogenous inoculation of S. oryzae in pot and hydroponics experiments. S. oryzae infection sharply increased the relative abundance of Ascomycota and decreased the Shannon and Simpson index of the endophytic community. Compared with the K-sufficient rice infected with S. oryzae, K-starved rice infected with S. oryzae (-K + I) increased the relative abundance of Ascomycota in leaf sheaths by 52.3%. Likewise, the -K + I treatment significantly decreased the Shannon and Simpson indexes by 27.7 and 25.0%, respectively. Sufficient K supply increased the relative abundance of Pseudomonas spp. in the host plant. S. oryzae infection profoundly inhibited the nutrient uptake of the host plant. The accumulation of oleic acid and linoleic acid in diseased rice decreased the biosynthesis of jasmonic acid (JA), and the content of JA was lowest in the -K + I treatment, which suppressed K+ uptake. These results emphasize the importance of K in resistance to S. oryzae infection by modulating endophyte community diversity and enhancing the nutrient-uptake capacity of the host plant.

20.
Antioxidants (Basel) ; 11(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35204284

RESUMEN

Potassium (K+) is an essential macro-element for plant growth and development given its implication in major processes such as photosynthesis, osmoregulation, protein synthesis, and enzyme function. Using 30-day-old Cakile maritima plants as halophyte model grown under K+ deprivation for 15 days, it was analyzed at the biochemical level to determine the metabolism of reactive oxygen species (ROS), key photorespiratory enzymes, and the main NADPH-generating systems. K+ starvation-induced oxidative stress was noticed by high malondialdehyde (MDA) content associated with an increase of superoxide radical (O2•-) in leaves from K+-deficient plants. K+ shortage led to an overall increase in the activity of hydroxypyruvate reductase (HPR) and glycolate oxidase (GOX), as well as of antioxidant enzymes catalase (CAT), those of the ascorbate-glutathione cycle, peroxidase (POX), and superoxide dismutase (SOD), and the main enzymes involved in the NADPH generation in both leaves and roots. Especially remarkable was the induction of up to seven CuZn-SOD isozymes in leaves due to K+ deficiency. As a whole, data show that the K+ starvation has associated oxidative stress that boosts a biochemical response leading to a general increase of the antioxidant and NADPH-generating systems that allow the survival of the halophyte Cakile maritima.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA