Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376304

RESUMEN

The isolation of keratin from poultry feathers using subcritical water was studied in a batch reactor at temperatures (120-250 °C) and reaction times (5-75 min). The hydrolyzed product was characterized by FTIR and elemental analysis, while the molecular weight of the isolated product was determined by SDS-PAGE electrophoresis. To determine whether disulfide bond cleavage was followed by depolymerization of protein molecules to amino acids, the concentration of 27 amino acids in the hydrolysate was analyzed by GC/MS. The optimal operating parameters for obtaining a high molecular weight protein hydrolysate from poultry feathers were 180 °C and 60 min. The molecular weight of the protein hydrolysate obtained under optimal conditions ranged from 4.5 to 12 kDa, and the content of amino acids in the dried product was low (2.53% w/w). Elemental and FTIR analyses of unprocessed feathers and dried hydrolysate obtained under optimal conditions showed no significant differences in protein content and structure. Obtained hydrolysate is a colloidal solution with a tendency for particle agglomeration. Finally, a positive influence on skin fibroblast viability was observed for the hydrolysate obtained under optimal processing conditions for concentrations below 6.25 mg/mL, which makes the product interesting for various biomedical applications.

2.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175148

RESUMEN

As a non-traditional sample matrix, feather samples can be used to effectively monitor antibiotic addition and organismal residue levels in poultry feeding. Therefore, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to simultaneously determine the residue levels of 26 quinolones in poultry feathers. The feather samples were extracted by sonication with a 1% formic acid and acetonitrile mixture in a water bath at 50 °C for 30 min, purified by the adsorption of multiple matrix impurities, dried with nitrogen, redissolved, and analyzed by UPLC-MS/MS. The linearity, limit of detection (LOD), limit of quantification (LOQ), recovery and precision were calculated. The 26 antibiotics demonstrated good linearity in the linear range. The recoveries and coefficients of variation were 78.9-110% and <13.7% at standard spiked levels of 10, 100 and 200 µg/kg, respectively. The LOD and LOQ were 0.12-1.31 and 0.96-2.60 µg/kg, respectively. The method also successfully identified quinolone residues in 50 poultry feather samples. The results showed that quinolones can accumulate and stabilize for a certain period of time after transferring from the body to the feathers of poultry.


Asunto(s)
Quinolonas , Animales , Cromatografía Liquida , Quinolonas/análisis , Aves de Corral , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Plumas/química , Antibacterianos/análisis , Extracción en Fase Sólida
3.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679232

RESUMEN

Keratin is a largely available protein that can be obtained from the ca. 3 million tons of feathers that the European poultry industry produces as a side-stream. Here, the functionalization of keratin from poultry feathers was evaluated using a one- versus two-stage process using two functionalization agents (succinic anhydride-SA and ethylene dianhydride-EDTAD). The functionalization resulted in the keratin having improved liquid swelling capacities, reaching up to 400%, 300%, and 85% increase in water, saline, and blood, respectively, compared to non-functionalized keratin. The highest swelling was obtained for samples functionalized with EDTAD (one-stage process), while the highest saline uptake was noted for samples processed with 25 wt% SA (two-stage process). Swelling kinetics modeling indicated that the water uptake by the functionalized samples takes place in two steps, and the EDTAD samples showed the highest diffusivity. It is demonstrated that the one-stage functionalization of keratin utilizing EDTAD results in better performance than two-stages, which allows for resource-saving and, thereby, protecting the environment. The results show some potential for the keratin to be utilized as liquid absorbent materials in water, saline, and blood uptake applications. Using keratin from side-streams is an advantage from a sustainability perspective over biomacromolecules that need to be extracted from virgin biomass.

4.
J Agric Food Chem ; 70(51): 16106-16116, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36524955

RESUMEN

The valorization of poultry byproducts, like feathers (processed to feather meal), in animal feed could contribute to the presence of veterinary drugs, including antibiotics. An animal study was carried out to study the fate of sulfadiazine, trimethoprim, and oxytetracycline in feathers, plasma, and droppings of broiler chickens. Cage and floor housing, different from current farm practices, were studied. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A longer presence of antibiotics was observed in feathers compared to plasma, with sulfadiazine being present the most. The internal presence (via blood) and the external presence (via droppings) of antibiotics in/on feathers were shown. Analysis of Escherichia coli populations, from droppings and feathers, highlighted that resistant bacteria could be transferred from droppings to feathers in floor-housed animals. The overall results suggest that feathers are a potential reservoir of antimicrobial residues and could contribute to the selection of antibiotic-resistant bacteria in the environment, animals, and humans.


Asunto(s)
Antibacterianos , Oxitetraciclina , Humanos , Animales , Antibacterianos/análisis , Oxitetraciclina/análisis , Pollos , Plumas/química , Sulfadiazina/farmacología , Sulfadiazina/análisis , Trimetoprim/farmacología , Trimetoprim/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
5.
Polymers (Basel) ; 13(20)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34685338

RESUMEN

The global rise in atmospheric temperature is leading to an increasing spread of semi-arid and arid regions and is accompanied by a deterioration of arable land. Polymers can help in a number of ways, but they must not be a burden to the environment. In this context, we present herein a method by which goose feathers, representative of keratin waste in general, can be transformed into hydrogels for use as a plant growth medium. The treatment of shredded feathers in Na2S solution at ambient conditions dissolves approx. 80% of the keratin within 30 min. During evaporation, the thiol groups of cysteine reoxidise to disulphide bridges. Additionally, the protein chains form ß-sheets. Both act as cross-links that enables the formation of gels. The drying conditions were found to be crucial as slower evaporation affords gels with higher degrees of swelling at the cost of reduced gel yields. The cress germination test indicated the absence of toxic substances in the gel, which strongly adheres to the roots. Thereby, the plants are protected from drought stress as long as the gel still contains moisture.

6.
Artículo en Inglés | MEDLINE | ID: mdl-34254877

RESUMEN

Poultry feathers are nowadays partially re-introduced into the animal food chain and the environment. They are valorised by their transformation into feather meal in order to be used as fertilisers in agriculture but also in animal feed (in particular, pet food and fish feed). However, unlike food producing animals for humans, feathers from poultry animals are not subject to a ban or regulatory limits on the presence of antibiotic residue after veterinary treatment. Feathers could therefore be a potential reservoir of antibiotic residues, unintentionally exposing the environment and animals through food, which might contribute to the emergence of antibiotic resistance. To this end, a multi-class liquid chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) was developed for the detection and determination of residues of 30 antibiotics from eight groups of antibacterial (quinolones, lincosamides, macrolides, penicillins, phenicols, tetracyclines, sulphonamides and diaminopyrimidines) in feathers. The extraction of the analytes from the feathers was carried out by the salting out technique. The separation of the analytes employed a Kinetex C18 column. Quantification was made using internal standards. All analytes have been validated according to the performance criteria of Decision 2002/657/EC. Trueness of the method ranged from to 93% to 111% for all analytes and intermediate precision were to 1.2-18.8%. The limits of quantification (LOQ) were from 13 to 150 µg kg-1 depending on the analytes. The method is suitable for the monitoring and quantification of antibiotic residues in feathers over the range 13-600 µg kg-1 depending on the compound.


Asunto(s)
Antibacterianos/química , Pollos , Cromatografía Liquida/métodos , Residuos de Medicamentos/química , Plumas/química , Espectrometría de Masas en Tándem/métodos , Animales , Límite de Detección , Reproducibilidad de los Resultados
7.
Materials (Basel) ; 13(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158218

RESUMEN

The growth of poultry meat production is increasing industrial waste quantities every year. Feathers represent a huge part of the waste, and international directives and restrictions prevent landfilling of such biodegradable materials with high burning values. Furthermore, with their unique properties, poultry waste feathers are already a reliable resource for many byproducts, such as keratin extraction, fibres, hydrogel production, etc., all trying to achieve a high-added value. However, mass reduction of waste feathers into useful applications, such as development of alternative building materials, is also an important aspect. To take advantage of feathers' thermal insulation capabilities, sound damping, and biodegradability, we worked towards mixing waste feathers with wood residues (wood shavings, dust, and mixed residues) for production of composite fibreboards, comparable to the market's medium density fibreboards. The emphasis was to evaluate waste poultry feathers as the component of natural insulation composites, along with mixed waste wood residues, to improve their mechanical properties. Various composite fibreboards with different shares of wood and feathers were produced and tested for mechanical, thermal, and acoustic properties, and biodegradability, with comparison to typical particle boards on the market. The addition of waste feather fibres into the fibreboards' structure improved thermal insulation properties, and the biodegradability of fibreboards, but decreased their bending strength. The sound transition acoustic loss results of the presented combination fibreboards with added feathers improved at mid and high frequencies. Finally, production costs are estimated based on small scale laboratory experiments of feather processing (cleaning and drying), with the assumption of cost reduction in cases of large industrial application.

8.
Environ Sci Pollut Res Int ; 27(2): 2027-2035, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31768952

RESUMEN

Bioconversion of recalcitrant keratinous biomass is one of the greatest ways to utilize products of feather hydrolysis and recycle them into bionetwork. Present study revealed 87% degradation of poultry feathers within 48 h in a constructed bioreactor using Chryseobacterium sp. RBT. The resulting feather hydrolysate (FH) was rich in soluble protein (3.56 ± 0.18 mg/ml), amino acids (3.83 ± 0.20 mg/ml), and macro and micro nutrients like N (8.0302%), P (0.3876%), K (0.5532%), Cu (0.0684%), Mg (0.8078%), Mn (0.2001%), Ca (0.4832%), Zn (0.0442%), and Fe (0.0330%). HPTLC analysis of FH revealed presence of tryptophan, cysteine, methionine, phenylalanine, glycine, valine, tyrosine, lysine, leucine, and serine as the primary amino acids. Field studies were conducted to apply FH as the bioenhancer to commercially important crops like brinjal and chilli through root drenching (20%, v/v). FH showed positive impact on the growth and development of plants along with early flowering and improved crop yield. In addition, nutritional quality of brinjal and chilli in terms of protein, amino acids, reducing sugars, phenolics, flavonoids, and antioxidant was elevated. Therefore, promotion and utility of by-products generated in feather degradation would be an effective strategy focusing on sustainable agricultural practices and problems associated with the waste management.


Asunto(s)
Biomasa , Reactores Biológicos/microbiología , Chryseobacterium/metabolismo , Plumas , Aves de Corral , Animales , Fertilizantes , Verduras
9.
J Agric Food Chem ; 67(40): 11236-11243, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31539244

RESUMEN

A method for the simultaneous determination of 27 sulfonamides in poultry feathers using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established in this study. The samples were extracted using 0.1 mol/L HCl solutions in a 60 °C water bath for 2 h, purified using hydrophilic-lipophilic balance solid-phase extraction, nitrogen-dried, and then reconstituted for UPLC-MS/MS analysis, which was performed with a CSH-C18 column. Linearity, limit of detection, limit of quantification, recovery, and precision were calculated in accordance with Commission Decision 2002/657/EC. For linearity, all standard curves showed a standard coefficient greater than 0.99, and the recoveries and coefficient of variation were 89-115% and <20%, respectively. The limit of detection and limit of quantification were 0.2-5 and 0.5-20 ng/g, respectively. The method was successfully applied to sulfamethazine (SMZ) residue accumulation monitoring in laying hen feathers and sulfonamide residue monitoring on poultry feathers. SMZ residue accumulation in the laying hen feathers was studied after administration with 100 mg/kg of SMZ for 21 consecutive days. SMZ residues were still detected in feathers 14 days after drug administration and persisted for up to 85 days. Results from 42 poultry feather samples showed that the feather is a suitable medium to monitor the illegal use of sulfonamides in poultry production.


Asunto(s)
Residuos de Medicamentos/farmacocinética , Plumas/química , Sulfametazina/farmacocinética , Sulfonamidas/química , Animales , Pollos/metabolismo , Cromatografía Líquida de Alta Presión , Residuos de Medicamentos/química , Residuos de Medicamentos/aislamiento & purificación , Residuos de Medicamentos/metabolismo , Femenino , Límite de Detección , Extracción en Fase Sólida , Sulfametazina/química , Sulfametazina/aislamiento & purificación , Sulfametazina/metabolismo , Sulfonamidas/aislamiento & purificación , Sulfonamidas/metabolismo , Espectrometría de Masas en Tándem
10.
Int J Syst Evol Microbiol ; 69(8): 2380-2387, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31150322

RESUMEN

Strain 7_F195T was previously isolated from chicken feather waste collected from an abattoir in Bloemfontein, South Africa. A polyphasic approach was followed to determine if strain 7_F195T belongs to the genus Chryseobacterium and if the organism can be classified as a new species. The nearest neighbours, based on 16S rRNA gene sequence similarity values (indicated in parentheses), were Chryseobacterium flavum KCTC 12877T (98.42 %), Chryseobacterium indologenesLMG 8337T (98.24 %) and Chryseobacterium gleum ATCC 35910T (97.71 %). Genome sequencing revealed a genome size of 4 796 535 bp and a DNA G+C content of 38.6 mol%. The ANI values of strain 7_F195T compared to C. flavum, C. indologenesand C. gleum were 81.45, 81.86 and 82.38 %, respectively. The digital DNA-DNA hybridization values for strain 7_F195T with C. flavum, C. indologenes and C. gleum were 23.7, 23.7 and 24.9 %, respectively. Notable phenotypic differences include the presence of urease activity in C. indologenes LMG 8337T and C. gleum NCTC 11432T, but not in strain 7_F195T or C. flavum KCTC 12877T. The predominant fatty acids of strain 7_F195T were iso-C15 : 0, iso-C17 : 1ω9c and iso-C17 : 0 3-OH and the most abundant polar lipid was phosphatidylethanolamine. Menaquinone-6 was the only respiratory quinone. Based on the data generated from this polyphasic study, strain 7_F195T represents a novel Chryseobacterium species for which the name Chryseobacteriumpennipullorum sp. nov. is proposed. The type strain is 7_F195T (=LMG 30781T=KCTC 62760T).


Asunto(s)
Chryseobacterium/clasificación , Plumas/microbiología , Filogenia , Aves de Corral/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Chryseobacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sudáfrica , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-30503833

RESUMEN

Under the EU official monitoring programs, the antibiotics are controlled in tissues of food producing animals. However, regarding the overuse of medicines in veterinary practice, there is a strong need to find an alternative to post-mortem analysis of antibiotics. The use of feathers, as an unconventional matrix, enable to control of birds treatment during breeding. Thus, a novel ultra-high performance liquid chromatography-tandem mass spectrometry method for the analysis of 53 compounds from 11 groups of antibacterials, including penicillins, cephalosporins, macrolides, tetracyclines, quinolones, sulfonamides, aminoglycosides, pleuromutilins, diaminopirymidynes, diaminopirymidynes derivatives and lincosamides in chicken feathers has been developed. The isolation of analytes by solvent extraction method with oxalic acid, Na2EDTA and acetonitrile was performed. The extracts were cleaned by filtration with OASIS HLB cartridges. Chromatographic separation was achieved on a Zorbax SB-C18 analytical column using mobile phase consisting of 0.025% heptafluorobutyric acid and acetonitrile. All compounds were successfully validated, with good sensitivity, accuracy and precision. The developed method gives an opportunity to effective monitoring, whether chickens have been given antibiotics, as well as let to identify the medicines that were used.


Asunto(s)
Antibacterianos/análisis , Cromatografía Líquida de Alta Presión/métodos , Plumas/química , Inocuidad de los Alimentos/métodos , Aves de Corral , Animales , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
12.
3 Biotech ; 7(2): 105, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28560646

RESUMEN

Soil salinity is major abiotic stresses affecting morphological, biochemical and physiological processes of plant growth. Chryseobacterium gleum sp. SUK isolated from salt-stressed soil exhibited ACC (1-aminocyclopropane-1-carboxylate) deaminase activity with IAA (indole acetic acid), siderophore, ammonia, hydrogen cyanide production, 2% salt tolerance and fungal cell wall degrading enzyme production (cellulase, protease). The isolate also showed a poultry feather degrading activity which is the main waste material of poultry industry and opulent source of proteins, amino acids, nitrogen, phosphorous, calcium, potassium, manganese, zinc and copper. Application of feather-degraded lysate with the degrading isolate, C. gleum sp. SUK denotes triple role of bioformulation to surmount salinity stress, management of poultry waste disposal and utilization of feathers degraded products as a biostimulant for better growth of plants as well as strain SUK having multifarious plant growth promoting traits. Wheat crops exposed to salt stressor were inoculated with studied bioformulation. Results of plant analysis showed improvement in root and shoot length, fresh and dry weight, chlorophyll, proteins, amino acids, phenolics, flavonoids content and decreased level of proline. In addition, Na+ uptake was decreased and K+ uptake was increased. Therefore, application of novel bioformulation could increase the yield of crops by ameliorating growth of plants and alleviating the salinity stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA