Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Math Biosci Eng ; 18(6): 7060-7075, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34814240

RESUMEN

A lightweight and low vibration amplitude web design method was investigated to reduce gear weight and noise. It was based upon the relationship between length and orthogonality that the principal stress lines were designed at the gear web. By constructing a vibration control model with gear design parameters, the optimal distance was calculated. By offsetting the principal stress lines at the optimal distance, the lightweight gear web with the low vibration amplitude was then generated. A vibration experimental platform was built to verify the novel gear vibration performances, and it was compared with other gears with the same web's porosity to verify loading performance. The experimental results indicated that compared with the solid gear, the novel gear is 20.50% lighter and with a 29.46% vibration amplitude reduction.


Asunto(s)
Vibración , Diseño de Equipo
2.
Math Biosci Eng ; 18(2): 1653-1669, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33757203

RESUMEN

A new method for lightweight gear design based on Michell Trusses Design method was investigated in this research to compare with the traditional Topology Optimization method. A workflow with detailed steps was established using example of constructing Michell Trusses to make lightening holes at the gear's web. In this workflow, Michell Trusses are generated from a set of concentric circles. By solving the equation with the variables of concentric circles (complexity), the optimal orthogonality of trusses can be determined. Real experiments were conducted to compare the two design methods in the aspects of design costs and product mechanical property, including recording the time consumed in each link and detecting the force of failure of gears by a testing platform. The results indicate that this new method can significantly reduce design time while maintain the same power-to-weight ratio as the Topology Optimization design, which potentially provide a new research direction for lightweight structural modeling in mechanical engineering and aviation industry. The experimental product developed in this research demonstrated the promising prospects for real world applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA