RESUMEN
In this work, we describe for the first time the synthesis of a thiazole bis-imine fluorometric sensor for the selective determination of Pb2+ in environmental, biological, and food samples. The novel molecules were obtained through a multicomponent reaction using a green and environmentally sustainable methodology. Synthesized chemical sensors were characterized using spectroscopic techniques to structural elucidation, including UV-Vis, FTIR-ATR, 1H and 13C NMR. One of these sensors exhibited remarkable selectivity for the Pb2+ ion at pH 3, forming a stable 1:1 (metal:ligand) complex. Additionally, the reaction conditions for complex formation were optimized, resulting in a method with a linear range of 0.667-10 µg L-1 and a detection limit of 0.18 µg L-1. Furthermore, method validation reinforced its reliability, showing low relative standard deviation in both intra-day and inter-day analyses. Recovery experiments ranged from 83.53 % to 119.10 %. This study represents a significant and innovative advancement in the development of rapid, sensitive, and alternative methods for the detection of potentially toxic metals in a wide range of samples employing a green multicomponent reaction of thiazole bis-imines.
RESUMEN
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Técnicas Biosensibles/métodos , Animales , Imagen Óptica/métodosRESUMEN
Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs' levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It's crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components.
Asunto(s)
Insecticidas , Poliaminas , Venenos de Araña , Avispas , Animales , Poliaminas/química , Venenos de Araña/química , Venenos de Araña/toxicidad , Insecticidas/farmacología , Insecticidas/química , Insecticidas/toxicidad , Humanos , ArañasRESUMEN
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Asunto(s)
Compuestos de Organoselenio , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Humanos , Química Farmacéutica , Estructura Molecular , Animales , Antioxidantes/química , Antioxidantes/farmacologíaRESUMEN
Nowadays, the use of super-resolution microscopy (SRM) is increasing globally due to its potential application in several fields of life sciences. However, a detailed and comprehensive guide is necessary for understanding a single-frame image's resolution limit. This study was performed to provide information about the structural organisation of isolated cellulose fibres from garlic and agave wastes through fluorophore-based techniques and image analysis algorithms. Confocal microscopy provided overall information on the cellulose fibres' microstructure, while techniques such as total internal reflection fluorescence microscopy facilitated the study of the plant fibres' surface structures at a sub-micrometric scale. Furthermore, SIM and single-molecule localisation microscopy (SMLM) using the PALM reconstruction wizard can resolve the network of cellulose fibres at the nanometric level. In contrast, the mean shift super-resolution (MSSR) algorithm successfully determined nanometric structures from confocal microscopy images. Atomic force microscopy was used as a microscopy technique for measuring the size of the fibres. Similar fibre sizes to those evaluated with SIM and SMLM were found using the MSSR algorithm and AFM. However, the MSSR algorithm must be cautiously applied because the selection of thresholding parameters still depends on human visual perception. Therefore, this contribution provides a comparative study of SRM techniques and MSSR algorithm using cellulose fibres as reference material to evaluate the performance of a mathematical algorithm for image processing of bioimages at a nanometric scale. In addition, this work could act as a simple guide for improving the lateral resolution of single-frame fluorescence bioimages when SRM facilities are unavailable.
Asunto(s)
Algoritmos , Celulosa , Microscopía Confocal , Celulosa/química , Microscopía Confocal/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Individual de Molécula/métodos , Microscopía de Fuerza Atómica/métodos , Microscopía Fluorescente/métodos , Ajo/químicaRESUMEN
Xylanases are of significant interest for biomass conversion technologies. Here, we investigated the allosteric regulation of xylan hydrolysis by the Bacillus subtilis GH11 endoxylanase. Molecular dynamics simulations (MDS) in the presence of xylobiose identified binding to the active site and two potential secondary binding sites (SBS) around surface residues Asn54 and Asn151. Arabinoxylan titration experiments with single cysteine mutants N54C and N151C labeled with the thiol-reactive fluorophore acrylodan or the ESR spin-label MTSSL validated the MDS results. Ligand binding at the SBS around Asn54 confirms previous reports, and analysis of the second SBS around N151C discovered in the present study includes residues Val98/Ala192/Ser155/His156. Understanding the regulation of xylanases contributes to efforts for industrial decarbonization and to establishing a sustainable energy matrix.
Asunto(s)
Bacillus subtilis , Simulación de Dinámica Molecular , Bacillus subtilis/genética , Sitios de Unión , Dominio Catalítico , Xilanos/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Especificidad por SustratoRESUMEN
OBJECTIVE: The aim of this study is to assess the microbial contamination of three different brands of esthetic elastomeric ligatures. MATERIALS AND METHODS: Different brands of esthetic ligatures (Unistick Pearl [American Orthodontics, Sheboygan, WI, USA], Power Sticks Pearl [Ortho Technology, Tampa, FL, USA], and Ease [Obscure, 3M Unitek, Monrovia, CA, USA]) were randomly assigned to permanent canines of 25 patients (aged 11-18 years) undergoing corrective orthodontic treatment. After 30 days, the ligatures were removed, processed, and the biofilm composition was analyzed by checkerboard DNA-DNA hybridization for 40 bacterial species. The microbiological data were analyzed using a nonparametric mixed model. RESULTS: The ligatures presented intense microbial contamination after 30 days, but no statistically significant differences were observed among the three groups (pâ¯> 0.05). The levels of the evaluated individual species and proportions of the microbial complexes showed no statistically significant differences among the ligature groups (pâ¯> 0.05). CONCLUSIONS: Esthetic elastomeric ligatures became multicolonized by several bacterial species after 30 days of exposure to the oral cavity. However, no relevant differences were observed among the biofilm composition formed on the different ligature brands.
Asunto(s)
Elastómeros , Humanos , Niño , Adolescente , Femenino , Masculino , Hibridación de Ácido Nucleico , Contaminación de Equipos , Aparatos Ortodóncicos/microbiologíaRESUMEN
BACKGROUND: High expression of the Cytokine Receptor-Like Factor 2 (CRLF2) gene has been observed in patients with acute lymphoblastic leukemia BCR-ABL1-like subtype. Currently, there is no commercial system available for the direct detection of the IGH::CRLF2 fusion by fluorescent in situ hybridization (FISH), as there are for many other leukemia-related gene fusions. In an effort to verify the IGH::CRLF2 fusion, some researchers prepare home-grown FISH probes from bacterial artificial chromosome clones flanking the IGH and CRLF2 genes, which is the best alternative to confirm the fusion, however difficult to reproduce in most cytogenetic laboratories. RESULTS: For the direct observation of the IGH::CRLF2 gene fusion we designed a methodological approach requiring the two commercially available IGH and CRLF2 break-apart probes. CONCLUSIONS: Our methodological approach allows direct visualization of the IGH::CRLF2 gene fusion and has the potential to be used for identification of other gene fusions.
RESUMEN
Lipid droplets (LDs) are intracellular organelles found in most cell types from adipocytes to cancer cells. Although recent investigations have implicated LDs in numerous diseases, the current available methods to monitor them in vertebrate models rely on static imaging using fluorescent dyes, limiting the investigation of their rapid in vivo dynamics. Here, we report a fluorophore chemistry approach to enable in vivo LD dynamic monitoring using a Nernstian partitioning mechanism. Interestingly, the effect of atorvastatin and osmotic treatments toward LDs revealed an unprecedented dynamic enhancement. Then, using a designed molecular probe with an optimized response to hydration and LD dynamics applied to Zebrafish developing pericardial and yolk-sac edema, which represents a tractable model of a human cardiovascular disease, we also provide a unique dual method to detect disease evolution and recovery.
Asunto(s)
Colorantes Fluorescentes , Gotas Lipídicas , Animales , Humanos , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Colorantes Fluorescentes/química , Pez Cebra , Permeabilidad , Edema/metabolismoRESUMEN
The detection of the most significant erythrocyte antigens present in each one of the individuals is fundamental when carrying out a transfusion or a transplant. Detection to date is performed by conventional serological methods through the antigen-antibody reaction. But several drawbacks may arise depending on the pathology under study, limiting the availability of blood components. Molecular methods such as genotyping is a tool that complements sensitivity and specificity and has come to revolutionize immunohematology in the blood bank, allowing not only the detection of erythrocyte antigens but also platelet antigens. These methodologies are applicable in patients and in large-scale donors, starting from the allelic variants present in each of the genes that code for the antigens of clinical interest, using microarray systems or systems based on particles labeled with specific probes or their variants that allow an analysis from the immunohematological point of view.
La detección de los antígenos eritrocitarios más significativos presentes en cada uno de los individuos es fundamental cuando se lleva a cabo una transfusión o un trasplante. La detección a la fecha se realiza mediante métodos serológicos convencionales a través de la reacción de antígeno-anticuerpo. Pero se pueden presentar varios inconvenientes dependiendo de la patología en estudio, lo cual limita la disponibilidad de los hemocomponentes. Los métodos moleculares, como la genotipificación, son una herramienta que complementa la sensibilidad y especificidad y que han venido a revolucionar la inmunohematología en el banco de sangre, lo cual permite no solo la detención de antígenos eritrocitarios sino también la de antígenos plaquetarios. Estas metodologías son aplicables en pacientes y en donantes a gran escala, partiendo de las variantes alélicas presentes en cada uno de los genes que codifican para los antígenos de interés clínico, utilizando los sistemas de microarreglos o los sistemas basados en partículas marcadas con sondas específicas o sus variantes que permiten un análisis desde el punto de vista inmunohematológico.
Asunto(s)
Antígenos de Plaqueta Humana , Humanos , Genotipo , Antígenos de Plaqueta Humana/análisis , Antígenos de Plaqueta Humana/genética , Bancos de Sangre , Transfusión Sanguínea , Técnicas de Genotipaje/métodosRESUMEN
Advances in molecular probes have recently intensified because they are valuable tools in studying species of interest for human health, the environment, and industry. Among these species, cyanide (CN-) and fluoride (F-) stand out as hazardous and toxic ions in trace amounts. Thus, there is a significant interest in probes design for their detection with diverse diazoles (pyrazole and imidazole) used for this purpose. These diazole derivatives are known as functional molecules because of their known synthetic versatility and applicability, as they exhibit essential photophysical properties with helpful recognition centers. This review provides an overview of the recent progress (2017-2021) in diazole-based sensors for CN- and F- detection, using the azolic ring as a signaling or recognition unit. The discussion focuses on the mechanism of the action described for recognizing the anion, the structure of the probes with the best synthetic simplicity, detection limits (LODs), application, and selectivity. In this context, the analysis involves probes for cyanide sensing first, then probes for fluoride sensing, and ultimately, dual probes that allow both species recognition.
Asunto(s)
Fluoruros , HumanosRESUMEN
Abstract Objectives To evaluate the colonization dynamics of subgingival microbiota established over six months around newly installed dental implants in periodontally healthy individuals, compared with their corresponding teeth. Methodology Seventeen healthy individuals assigned to receive single dental implants participated in the study. Subgingival biofilm was sampled from all implant sites and contralateral/ antagonist teeth on days 7, 30, 90, and 180 after implant installation. Microbiological analysis was performed using the Checkerboard DNA-DNA hybridization technique for detection of classical oral taxa and non-oral microorganisms. Significant differences were estimated by Mann-Whitney and Friedman tests, while associations between implants/teeth and target species levels were assessed by linear regression analysis (LRA). Significance level was set at 5%. Results Levels of some species were significantly higher in teeth compared to implants, respectively, at day 7 ( V.parvula , 6 × 10 5 vs 3 × 105 ; Milleri streptococci , 2 × 10 6 vs 6 × 10 5 ; Capnocytophaga spp., 2 × 10 6 vs 9 × 10 5 ; E.corrodens , 2 × 10 6 vs 5 × 10 5 ; N. mucosa , 2 × 10 6 vs 5 × 10 5 ; S.noxia , 2 × 10 6 vs 3 × 10 5 ; T.socranskii , 2 × 10 6 vs 5 × 10 5 ; H.alvei , 4 × 10 5 vs 2 × 10 5 ; and Neisseria spp., 6 × 10 5 vs 4 × 10 4 ), day 30 ( V.parvula , 5 × 10 5 vs 10 5 ; Capnocytophaga spp., 1.3 × 10 6 vs 6.8 × 10 4 ; F.periodonticum , 2 × 10 6 vs 10 6 ; S.noxia , 6 × 10 5 vs 2 × 10 5 ; H.alvei , 8 × 10 5 vs 9 × 10 4 ; and Neisseria spp., 2 × 10 5 vs 10 6 ), day 120 ( V.parvula , 8 × 10 5 vs 3 × 10 5 ; S.noxia , 2 × 10 6 vs 0; and T.socranskii , 3 × 10 5 vs 8 × 10 4 ), and day 180 ( S.enterica subsp. enterica serovar Typhi, 8 × 10 6 vs 2 × 10 6 ) (p<0.05). Implants showed significant increases over time in the levels of F.nucleatum , Gemella spp., H.pylori , P.micra , S.aureus , S.liquefaciens , and T.forsythia (p<0.05). LRA found that dental implants were negatively correlated with high levels of S. noxia and V. parvula (β=-0.5 to -0.3; p<0.05). Conclusions Early submucosal microbiota is diverse and only a few species differ between teeth and implants in the same individual. Only 7 days after implant installation, a rich microbiota can be found in the peri-implant site. After six months of evaluation, teeth and implants show similar prevalence and levels of the target species, including known and new periodontopathic species.
RESUMEN
In this work, we synthesized a polydimethylsiloxane membrane containing two emitter groups chemically attached to the membrane structure. For this, we attached the anthracene group and the [Eu(bzac)3] complex as blue and red emitters, respectively, in the matrix via hydrosilylation reactions. The synthesized membrane can be used as a bifunctional temperature and oxygen ratiometric optical probe by analyzing the effects that temperature changes and oxygen levels produce on the ratio of anthracene and europium(III) emission components. As a temperature probe, the system is operational in the 203-323 K range, with an observed maximum relative sensitivity of 2.06% K-1 at 290 K and temperature uncertainties below 0.1 K over all the operational range. As an oxygen probe, we evaluated the ratiometric response at 25, 30, 35, and 40 °C. These results show an interesting approach to obtaining bifunctional ratiometric optical probes and also suggest the presence of an anthracene â europium(III) energy transfer, even though there is no chemical bonding between species.
Asunto(s)
Europio , Oxígeno , Europio/química , Luminiscencia , AntracenosRESUMEN
In recent years, the study of new probes has aroused great interest in the scientific community around the world. Therefore, in the present work, we present a potential candidate for a new spectroscopic probe, the Xe(CO)3(NNO) conjugated to 2-(4'-aminophenyl) benzothiazole complex, XeABT. For this proposal, chemical shift calculations at the DFT level were performed; thus, a factorial design was carried out in order to choose the best computational method. The best combination was the base function ZORA-def2-TZVP, with the functional PBE0 and considering the relativistic effects with the ZORA implementation. Our findings reveal that the 129Xe chemical shifts are affected by thermal and solvent effects, and considering an enzymatic environment, a significant decrease in δ(129Xe) values is observed, suggesting with the XeABT complex it may be a promising spectroscopic probe.
Asunto(s)
Tiazoles , Isótopos de Xenón , Solventes/química , Isótopos de Xenón/química , Espectroscopía de Resonancia Magnética/métodosRESUMEN
Using intracellular-controlled photochemistry to track dynamic organelle processes is gaining attention due to its broad applications. However, most of the employed molecular probes usually require toxic photosensitizers and complex bioanalytical protocols. Here, the synthesis and performance of two new subcellular probes (MitoT1 and MitoT2) are described. The probes undergo photooxidation in the damaged tissue of zebrafish, a model system for tissue regeneration studies. Using high-resolution confocal microscopy and fluorescence spectroscopy, we combine the mentioned photoinduced interconversion at the homeostatic membrane viscosity to track singlet oxygen activity selectively. The continuous and real-time biosensing method reported here provides a new approach for simultaneously detecting endogenous singlet oxygen and viscosity status.
Asunto(s)
Colorantes Fluorescentes , Oxígeno Singlete , Animales , Colorantes Fluorescentes/química , Mitocondrias/química , Viscosidad , Pez CebraRESUMEN
In situ hybridization with mRNA probes enables the detection and localization of gene expression in plant somatic embryogenesis samples. BbrizSERK is a gene that is expressed in embryogenic cells and tissues of Brachiaria. Here we describe methods used for in situ hybridization to localize BbrizSERK transcripts during somatic embryogenesis of Brachiaria brizantha according to the plant material and observations intended, using paraffin or butyl methyl methacrylate resin-embedded samples, as well as a method for whole-mount preparation applicable for the analysis of other genes involved in embryogenic processes, along with other in vitro processes.
Asunto(s)
Brachiaria , Brachiaria/genética , Desarrollo Embrionario , Hibridación in SituRESUMEN
The study of labeling selectivity and mechanisms of fluorescent organelle probes in living cells is of continuing interest in biomedical sciences. The tetracationic phthalocyanine-like ZnTM2,3PyPz photosensitizing dye induces a selective violet fluorescence in mitochondria of living HeLa cells under UV excitation that is due to co-localization of the red signal of the dye with NAD(P)H blue autofluorescence. Both red and blue signals co-localize with the green emission of the mitochondria probe, rhodamine 123. Microscopic observation of mitochondria was improved using image processing and analysis methods. High dye concentration and prolonged incubation time were required to achieve optimal mitochondrial labeling. ZnTM2,3PyPz is a highly cationic, hydrophilic dye, which makes ready entry into living cells unlikely. Redox color changes in solutions of the dye indicate that colorless products are formed by reduction. Spectroscopic studies of dye solutions showed that cycles of alkaline titration from pH 7 to 8.5 followed by acidification to pH 7 first lower, then restore the 640 nm absorption peak by approximately 90%, which can be explained by formation of pseudobases. Both reduction and pseudobase formation result in formation of less highly charged and more lipophilic (cell permeant) derivatives in equilibrium with the parent dye. Some of these are predicted to be lipophilic and therefore membrane-permeant; consequently, low concentrations of such species could be responsible for slow uptake and accumulation in mitochondria of living cells. We discuss the wider implications of such phenomena for uptake of hydrophilic fluorescent probes into living cells.
Asunto(s)
Mitocondrias , Fármacos Fotosensibilizantes , Colorantes Fluorescentes/química , Células HeLa , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Compuestos Organometálicos , Oxidación-Reducción , Fármacos Fotosensibilizantes/metabolismoRESUMEN
BACKGROUND: In a previous work, we identified nine founder mutations present in close to 80% of BRCA1 and BRCA2 mutation carriers, and distributed across the country. The presence of founder mutations constitutes a valuable opportunity to develop new strategies for genetic screening. Genetic tests are primarily performed by NGS sequencing, which requires sophisticated and expensive equipment, and it takes 2-3 weeks for the results to be informed to the patient. In addition, genetic tests are not covered by insurance companies in Latin American countries. In this work, we present the standardization and technical validation of a real-time PCR based methodology for allelic discrimination in order to identify the nine Chilean founder mutations in BRCA1 and BRCA2 genes. METHODS AND RESULTS: We designed nine pairs of probes and nine pairs of primers to amplify synchronically nine regions of the BRCA1/BRCA2 genes by real-time PCR, in order to identify the nine founder mutations through allelic discrimination analyses. Technical validation was performed using 90 positive and 90 negative samples for each mutation. The methodology was tested in a second group of 60 patients. Our method correctly classified carriers and non-carriers of one of the nine Chilean founder mutations with a 100% specificity and 100% sensitivity, compared with Sanger sequencing performance. CONCLUSIONS: We develop an inexpensive, simple, and fast mutation detection method that could be implemented locally in Hospitals from the Private to Public health system. This methodology may be useful for the screening of BRCA1 and BRCA2 mutations in other populations.
Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Carcinoma Epitelial de Ovario/genética , Chile , Detección Precoz del Cáncer , Femenino , Efecto Fundador , Genes BRCA2 , Predisposición Genética a la Enfermedad , Humanos , Mutación/genética , Neoplasias Ováricas/genética , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Molecular imaging (MI) is a non-invasive growing technology that allows the investigation of cellular and molecular processes in basic and clinical research and medicine. Luminescent proteins and radionuclides can be associated to target molecules providing high-definition and real-time image of whole body in few minutes or hours. Several MI studies have enabled the determination of molecular partners, in vivo tracking, and fate of compounds in different disorders. Considering that galectins are multifaceted proteins with great impact in many biological events, here we describe methods and strategies to generate labeled galectins for in vivo non-invasive imaging studies.
Asunto(s)
Galectinas , Imagen Molecular , Proteínas LuminiscentesRESUMEN
INTRODUCTION: Cathepsin K (CatK) is a lysosomal cysteine protease and the predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix. Hence, CatK is an attractive therapeutic target related to diseases characterized by bone resorption, like osteoporosis. AREAS COVERED: This review summarizes the patent literature from 2011 to 2021 on CatK inhibitors and their potential use as new treatments for osteoporosis. The inhibitors were classified by their warheads, with the most explored nitrile-based inhibitors. Promising in vivo results have also been disclosed. EXPERT OPINION: As one of the most potent lysosomal proteins whose primary function is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic intervention. Nevertheless, there is no record of any approved drug that targets CatK. The most notable cases of drug candidates targeting CatK were balicatib and odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter the market. Further developments include exploring new chemical entities beyond the nitrile-based chemical space, with improved ADME and safety profiles. In addition, CatK's role in cancer immunoexpression and its involvement in the pathophysiology of osteo- and rheumatoid arthritis have raised the race to develop activity-based probes with excellent potency and selectivity.