Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.427
Filtrar
1.
Int J Biol Macromol ; : 135885, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307507

RESUMEN

This study focuses on optimizing the delivery of Nelfinavir (NFV), a vital protease inhibitor in antiretroviral therapy, and Epigallocatechin gallate (EGCG), a potent adjunctive anti- human immunodeficiency virus (anti-HIV) agent found in green tea. The challenge lies in NFV's low intrinsic dissolution rate, significant p-gp efflux, and high hepatic metabolism, necessitating frequent and high-dose administration. Our objective was to develop a nanoemulsion loaded with NFV and EGCG to enhance oral delivery, expediting antiretroviral effects for NeuroAIDS treatment. After meticulous excipient screening, we selected Tween 40 as the surfactant and polyethylene glycol 400 (PEG 400) as the co-surfactant. Employing a Quality by Design (QbD) approach with statistical multivariate methods, we optimized the nanoemulsion that exhibited a droplet size of 83.21 nm, polydispersity index (PDI) of 2.289, transmittance of 95.20 %, zeta potential of 1.495 mV, pH of 6.95, refractive index of 1.40, viscosity of 24.00 ±â€¯0.42 mPas, and conductivity of 0.162 µS/cm. Pharmacokinetic studies demonstrated superior in vivo absorption of the optimized nanoemulsion compared to NFV and EGCG suspension. The optimized nanoemulsion showcased higher Cmax of NFV (9.75 ±â€¯1.23 µg/ml) and EGCG (27.7 ±â€¯1.22 µg/ml) in the brain, along with NFV (26.44 ±â€¯1.44 µg/ml) and EGCG (313.20 ±â€¯5.53 µg/ml) in the plasma. This study advocates for the potential of NFV and EGCG-loaded nanoemulsion in combination antiretroviral therapy (cART) for effective NeuroAIDS management.

2.
Antimicrob Agents Chemother ; : e0056224, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225484

RESUMEN

We have synthesized a novel and highly selective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease peptide mimetic inhibitor mimicking the replicase 1ab recognition sequence -Val-Leu-Gln- and utilizing a cysteine selective acyloxymethyl ketone as the electrophilic warhead to target the active site Cys145. Utilizing a constrained cyclic peptide that locks the conformation between the P3 (Val) and P2 (Leu) residues, we identified a highly selective inhibitor that fills the P2 pocket occupied by the leucine residue sidechain of PF-00835231 and the dimethyl-3-azabicyclo-hexane motif in nirmatrelvir (PF-07321332). This strategy resulted in potent and highly selective Mpro inhibitors without inhibiting essential host cathepsin cysteine or serine proteases. The lead prototype compound 1 (MPro IC50 = 230 ± 18 nM) also inhibits the replication of multiple SARS-CoV-2 variants in vitro, including SARS-CoV-2 variants of concern, and can synergize at lower concentrations with the viral RNA polymerase inhibitor, remdesivir, to inhibit replication. It also reduces SARS-CoV-2 replication in SARS-CoV-2 Omicron-infected Syrian golden hamsters without obvious toxicities, demonstrating in vivo efficacy. This novel lead structure provides the basis for optimization of improved agents targeting evolving SARS-CoV-2 drug resistance that can selectively act on Mpro versus host proteases and are less likely to have off-target effects due to non-specific targeting. Developing inhibitors against the active site of the main protease (Mpro), which is highly conserved across coronaviruses, is expected to impart a higher genetic barrier to evolving SARS-CoV-2 drug resistance. Drugs that selectively inhibit the viral Mpro are less likely to have off-target effects warranting efforts to improve this therapy.

3.
Parasites Hosts Dis ; 62(3): 330-341, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39218632

RESUMEN

The Trichinella spiralis novel cystatin (TsCstN) inhibits cathepsin L (CatL) activity and inflammation of macrophages during lipopolysaccharide (LPS) induction. To identify the protease inhibitory region, this study applied an in silico modeling approach to simulate truncation sites of TsCstN (Ts01), which created four truncated forms, including TsCstN∆1-39 (Ts02), TsCstN∆1-71 (Ts03), TsCstN∆1-20, ∆73-117 (Ts04), and TsCstN∆1-20, ∆42-117 (Ts05). The superimposition of these truncates modeled with AlphaFold Colab indicated that their structures were more akin to Ts01 than those modeled with I-TASSER. Moreover, Ts04 exhibited the closest resemblance to the structure of Ts01. The recombinant Ts01 (rTs01) and truncated proteins (rTs02, rTs03, and rTs04) were successfully expressed in a prokaryotic expression system while Ts05 was synthesized, with sizes of approximately 14, 12, 8, 10, and 2.5 kDa, respectively. When determining the inhibition of CatL activity, both rTs01 and rTs04 effectively reduced CatL activity in vitro. Thus, the combination of the α1 and L1 regions may be sufficient to inhibit CatL. This study provides comprehensive insights into TsCstN, particularly regarding its protein function and inhibitory domains against CatL.


Asunto(s)
Cistatinas , Trichinella spiralis , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Animales , Cistatinas/metabolismo , Cistatinas/química , Cistatinas/genética , Catepsina L/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Modelos Moleculares , Dominios Proteicos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lipopolisacáridos/farmacología
4.
Front Immunol ; 15: 1443297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224588

RESUMEN

α -1 antitrypsin (A1AT) is a 52 kDa acute-phase glycoprotein belonging to the serine protease inhibitor superfamily (SERPIN). It is primarily synthesized by hepatocytes and to a lesser extent by monocytes, macrophages, intestinal epithelial cells, and bronchial epithelial cells. A1AT is encoded by SERPINA1 locus, also known as PI locus, highly polymorphic with at least 100 allelic variants described and responsible for different A1AT serum levels and function. A1AT inhibits a variety of serine proteinases, but its main target is represented by Neutrophil Elastase (NE). However, recent attention has been directed towards its immune-regulatory and homeostatic activities. A1AT exerts immune-regulatory effects on different cell types involved in innate and adaptive immunity. Additionally, it plays a role in metal and lipid metabolism, contributing to homeostasis. An adequate comprehension of these mechanisms could support the use of A1AT augmentation therapy in many disorders characterized by a chronic immune response. The aim of this review is to provide an up-to-date understanding of the molecular mechanisms and regulatory pathways responsible for immune-regulatory and homeostatic activities of A1AT. This knowledge aims to support the use of A1AT in therapeutic applications. Furthermore, the review summarizes the current state of knowledge regarding the application of A1AT in clinical and laboratory settings human and animal models.


Asunto(s)
Homeostasis , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/inmunología , alfa 1-Antitripsina/uso terapéutico , alfa 1-Antitripsina/metabolismo , Animales , Inmunidad Innata , Inmunidad Adaptativa
5.
Sci Rep ; 14(1): 20697, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237598

RESUMEN

Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.


Asunto(s)
Proteasas 3C de Coronavirus , Luciferasas , Humanos , Luciferasas/metabolismo , Luciferasas/genética , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Genes Reporteros , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Antivirales/farmacología , Células HEK293
6.
bioRxiv ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39257753

RESUMEN

TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in cell entry of respiratory viruses. To date, no inhibitors have been specifically developed toward this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling, uncovered important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further show the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights of their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.

7.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273149

RESUMEN

Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.


Asunto(s)
Furina , Furina/antagonistas & inhibidores , Furina/metabolismo , Humanos , Animales , Peptidomiméticos/farmacología , Peptidomiméticos/química , Peptidomiméticos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Péptidos/uso terapéutico , Péptidos/química , Péptidos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Desarrollo de Medicamentos
8.
Food Chem ; 463(Pt 2): 141179, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39276556

RESUMEN

In this study, an antimicrobial component, silk protease inhibitors (SPIs), was extracted from discarded silkworm cocoons, and a suitable degumming method for obtaining regenerated silk fibroin (SF) was screened. An edible antimicrobial coating was prepared by mixing SPIs with SF for evaluation of potential in strawberries preservation. Results demonstrated that SPI could effectively inhibit mycelial growth and spore germination. The alkaline protease method exhibited the highest degumming rate of 24.4 %. The SPI-SF coating exhibited excellent mechanical properties, high water vapor permeability, and easy washability. Within 10 days, seedlings treatment with SPI-SF coating solution showed a germination rate of 94.3 %, and exhibited good biocompatibility with HepG2 cells. Coating with SPI-SF led to increase in the storage period of strawberries to 10-14 days, concurrent with considerable reduction in decay rate at room temperature. Conclusively, this study demonstrates the potential of SPI-SF edible coating in strawberries preservation.

9.
Front Immunol ; 15: 1433642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301022

RESUMEN

Secretory leukocyte protease inhibitor (SLPI) is an important cationic protein involved in innate airway immunity and highly expressed in mucosal secretions, shown to target and inhibit neutrophil elastase (NE), cathepsin G and trypsin activity to limit proteolytic activity. In addition to the potent anti-protease activity, SLPI has been demonstrated to exert a direct anti-inflammatory effect, which is mediated via increased inhibition and competitive binding of NF-κB, regulating immune responses through limiting transcription of pro-inflammatory gene targets. In muco-obstructive lung disorders, such as Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF), there is an observed elevation in airway SLPI protein concentrations as a result of increased lung inflammation and disease progression. However, studies have identified COPD patients presenting with diminished SLPI concentrations. Furthermore, there is a decrease in SLPI concentrations through cleavage and subsequent inactivation by NE degradation in Pseudomonas aeruginosa infected people with CF (pwCF). These observations suggest reduced SLPI protein levels may contribute to the compromising of airway immunity indicating a potential role of decreased SLPI levels in the pathogenesis of muco-obstructive lung disease. The Beta Epithelial Na+ Channel transgenic (ENaC-Tg) mouse model phenotype exhibits characteristics which replicate the pathological features observed in conditions such as COPD and CF, including mucus accumulation, alterations in airway morphology and increased pulmonary inflammation. To evaluate the effect of SLPI in muco-obstructive pulmonary disease, ENaC-Tg mice were crossed with SLPI knock-out (SLPI-/-) mice, generating a ENaC-Tg/SLPI-/- colony to further investigate the role of SLPI in chronic lung disease and determine the effect of its ablation on disease pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Canales Epiteliales de Sodio , Enfermedad Pulmonar Obstructiva Crónica , Inhibidor Secretorio de Peptidasas Leucocitarias , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Animales , Ratones , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/genética , Humanos , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Ratones Transgénicos , Ratones Noqueados , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pseudomonas aeruginosa , Infecciones por Pseudomonas/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología
10.
Viruses ; 16(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39339899

RESUMEN

HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.


Asunto(s)
VIH-1 , Virión , Ensamble de Virus , Replicación Viral , VIH-1/fisiología , VIH-1/efectos de los fármacos , Humanos , Virión/metabolismo , Virión/fisiología , Infecciones por VIH/virología , Infecciones por VIH/tratamiento farmacológico , Fármacos Anti-VIH/farmacología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
11.
J Biol Chem ; 300(9): 107627, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098536

RESUMEN

Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.

12.
Proc Natl Acad Sci U S A ; 121(35): e2403424121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159367

RESUMEN

Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.


Asunto(s)
Proteínas Portadoras , Comovirus , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Vigna , Comovirus/metabolismo , Comovirus/fisiología , Comovirus/genética , Vigna/virología , Vigna/metabolismo , Nicotiana/virología , Nicotiana/metabolismo , Nicotiana/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/virología , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/genética , Plantas Modificadas Genéticamente , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Potyvirus/fisiología , Potyvirus/metabolismo , Endopeptidasas
13.
ChemMedChem ; : e202400360, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118493

RESUMEN

Two series of macrocyclic inhibitors addressing the S1 pocket and the prime site of the fibrinolytic serine protease plasmin have been developed. In the first series the P1 tranexamoyl residue was coupled to 4-aminophenylalanine in P1' position, which provided moderately potent inhibitors with inhibition constants around 1 µM. In the second series, a substituted biphenylalanine was incorporated as P1' residue leading to approximately 1000-fold stronger plasmin inhibitors, the best compounds possess subnanomolar inhibition constants. The most effective compounds already exhibit a certain selectivity as plasmin inhibitors compared to other trypsin-like serine proteases such as trypsin, plasma kallikrein, thrombin, activated protein Ca, as well as factors XIa and Xa. For inhibitor 28 of the second series, the co-crystal structure in complex with a Ser195Ala microplasmin mutant revealed the P2' residue adopts multiple conformations. Most polar contacts to plasmin and surrounding water molecules are mediated through the P1 tranexamoyl residue, whereas the bound conformation of the macrocycle is mainly stabilized by two intramolecular hydrogen bonds.

14.
J Infect Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132824

RESUMEN

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ∼20% of the treated cases. Persistence of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious form decayed slowly with a half-life of ∼1 day, suggesting that its persistence could outlive the treatment course to re-ignite SARS-CoV-2 infection as the drug is eliminated. Notably, extending nirmatrelvir treatment beyond 8 days abolished viral rebound in vitro. Our findings point in a particular direction for future investigation of virus persistence and offer a specific treatment recommendation that should be tested clinically.

15.
Pathogens ; 13(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204278

RESUMEN

Serine protease inhibitors (serpins) participate in the regulation of inflammation, blood coagulation, and complement activation in humans. This research aimed to identify and characterize such inhibitors of the human liver fluke Opisthorchis viverrini. Parasite proteins that might contribute to the modulation of host physiology are of particular interest, especially as chronic opisthorchiasis increases the risk of developing biliary cancer. BLAST was used to find hypothetical serpins predicted from the parasite genome data. RNA extraction and reverse transcriptase PCR were used to isolate a serpin cDNA and to determine developmental transcript abundance. The evolutionary relation to other trematode serpins was revealed by phylogenetic analysis. Recombinant serpin was expressed in Escherichia coli and used to test the immunoreactivity of human opisthorchiasis sera and the inhibition of human serine proteases. A substantial serpin family with high sequence divergence among the members was found in the genus Opisthorchis. A serpin, different from previously analyzed trematode serpins, was cloned. The transcript was only detected in metacercariae and newly excysted juveniles. Human opisthorchiasis sera showed statistically significant reactivity to recombinant serpin. The serpin caused moderate inhibition of thrombin and low inhibition of kallikrein and chymotrypsin. This parasite serpin could be further evaluated as a diagnostic tool for early infection. Kallikrein and thrombin are involved in fibrinolysis; therefore, further research should explore the effects of the parasite serpin on this process.

16.
Mol Cell Probes ; 77: 101973, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39025272

RESUMEN

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , SARS-CoV-2 , Replicación Viral , SARS-CoV-2/efectos de los fármacos , Humanos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos/métodos , COVID-19/virología
17.
Antiviral Res ; 229: 105958, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38972603

RESUMEN

This exploratory analysis of the double-blind, phase 3, SCORPIO-SR trial assessed the effect of ensitrelvir in preventing post coronavirus disease 2019 (COVID-19) condition (PCC). Patients with mild-to-moderate COVID-19 were randomized (1:1:1) within 120 h of symptom onset; received 5-day oral ensitrelvir 125 mg (375 mg on day 1), 250 mg (750 mg on day 1), or a matching placebo once daily; and were assessed for the severity of typical PCC symptoms using a self-administered questionnaire. In total, 341, 317, and 333 patients were assessed in the ensitrelvir 125-mg, ensitrelvir 250-mg, and placebo groups, respectively (mean age, 35.6-36.5 years; men, 53.3%-58.3%). On days 85, 169, and 337, ensitrelvir 125-mg treatment showed 32.7% (95% confidence interval [CI]: -30.6, 66.1), 21.5% (95% CI: -37.3, 55.6), and 24.6% (95% CI: -43.7, 60.9) reductions versus placebo, respectively, in the risk of any of the 14 acute-phase COVID-19 symptoms (at least one mild, moderate, or severe symptom with general health not returning to the usual level). Ensitrelvir 250-mg treatment showed 10.9% (95% CI: -67.0, 52.8), 9.5% (95% CI: -56.6, 48.0), and 30.6% (95% CI: -36.2, 65.5) risk reductions versus placebo on days 85, 169, and 337, respectively. Risk reductions were observed in any of the 4 neurological symptoms and were more pronounced among patients with high acute-phase symptom scores at baseline and among those with a baseline body mass index ≥25 kg/m2. Ensitrelvir treatment in the acute phase of COVID-19 may reduce the risk of various symptoms associated with PCC. TRIAL REGISTRATION NUMBER: jRCT2031210350.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antivirales/uso terapéutico , Método Doble Ciego , Indazoles , Síndrome Post Agudo de COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Resultado del Tratamiento , Triazinas , Triazoles
18.
Indian J Clin Biochem ; 39(3): 392-400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005863

RESUMEN

Increased alcohol intake over decades leads to progressive alcohol-related liver disease (ALD) and contributes to increased mortality. It is characterized by reduced platelet count. Platelets have a role in protecting vascular integrity and involved in liver regeneration. Alcohol affects the platelet count and its function. Platelet function is regulated by their proteins, released during pathophysiological conditions. Therefore, platelet proteome plays a vital role during ALD. This preliminary study consists of 10 patients with ALD. It includes the preparation of human platelets for the proteomic approach. We performed liquid chromatography-mass spectrometry for the samples. A total of 536 proteins were identified in patients with ALD of which 31 proteins were mentioned as a candidate based on their clinical significance. The advancement of diagnostic or therapeutic tools based on the application of platelet proteins in ALD is still far off. Platform for platelet and its proteome research may give diagnostic and prognostic insights into ALD. Platelet proteomes could possibly be concluded as therapeutic and potential diagnostic or prognostic markers in ALD. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-023-01120-9.

19.
Turk J Pharm Sci ; 21(3): 174-183, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994797

RESUMEN

Objectives: Dysregulation of proteolysis underlies diseases like cancer. Protease inhibitors (PIs) regulate many biological functions and hence have potential anticancer properties. With this background, the current study aimed to identify the PI from natural sources such as plants and microbes against trypsin (a protease), which was assayed against casein, using an ultraviolet spectrophotometer-based methodology. Materials and Methods: PI extracted from a few plants and microbial samples were screened for their PI activity against trypsin. The PI from the most promising source in our study, Tinospora cordifolia (Willd.) Hook. f. and Thoms. stem, was partially purified using ammonium sulfate precipitation followed by dialysis. The PI activity of the partially purified inhibitor was analyzed against chymotrypsin and collagenase enzymes, and the cytotoxic effect of the PI was checked on HepG2 (liver carcinoma) cells by MTT- [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide]- assay. Liquid Chromatograography Mass Spectrometry -based proteomic studies were performed on HepG2 cells to understand the signaling pathways affected by the PIs in the liver cancer cell line. Results: Among the samples tested the PIs from T. cordifolia stem extract had the highest inhibitory activity (72.0%) against trypsin along with cytotoxicity to HepG2 cells. After partial purification by 80.0% ammonium sulfate precipitation, PI had increased inhibitory activity (83.0%) against trypsin and enhanced cytotoxicity (47.0%) to HepG2 cells. Proteomic analysis of the PI-treated HepG2 cells revealed that BAG2 and FAT10 signaling pathways were affected, which may have caused the inhibition of cancer cell proliferation. Conclusion: PI from T. cordifolia stem has promising anticancer potential and hence can be used for further purification and characterization studies toward cancer drug development.

20.
Front Pharmacol ; 15: 1396710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021839

RESUMEN

Recently developed small-molecule inhibitors of the lysosomal protease dipeptidyl peptidase 1 (DPP1), also known as cathepsin C (CatC), can suppress suppurative inflammation in vivo by blocking the processing of zymogenic (pro-) forms of neutrophil serine proteases (NSPs), including neutrophil elastase, proteinase 3, and cathepsin G. DPP1 also plays an important role in activating granzyme serine proteases that are expressed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. Therefore, it is critical to determine whether DPP1 inhibition can also cause off-target suppression of CTL/NK-cell-mediated killing of virus-infected or malignant cells. Herein, we demonstrate that the processing of human granzymes A and B, transitioning from zymogen to active proteases, is not solely dependent on DPP1. Thus, the killing of target cells by primary human CD8+ T cells, NK cells, and gene-engineered anti-CD19 CAR T cells was not blocked in vitro even after prior exposure to high concentrations of the reversible DPP1 inhibitor brensocatib. Consistent with this observation, the turnover of model granzyme A/B peptide substrates in the human CTL/NK cell lysates was not significantly reduced by brensocatib. In contrast, preincubation with brensocatib almost entirely abolished (>90%) both the cytotoxic activity of mouse CD8+ T cells and granzyme substrate turnover. Overall, our finding that the effects of DPP1 inhibition on human cytotoxic lymphocytes are attenuated in comparison to those of mice indicates that granzyme processing/activation pathways differ between mice and humans. Moreover, the in vitro data suggest that human subjects treated with reversible DPP1 inhibitors, such as brensocatib, are unlikely to experience any appreciable deficits in CTL/NK-cell-mediated immunities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA