Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
1.
Front Cardiovasc Med ; 11: 1365008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966751

RESUMEN

Introduction: Microvesicles (MV) released by endothelial cells (EC) following injury or inflammation contain tissue factor (TF) and mediate communication with the underlying smooth muscle cells (SMC). Ser253-phosphorylated TF co-localizes with filamin A at the leading edge of migrating SMC. In this study, the influence of endothelial-derived TF-MV, on human coronary artery SMC (HCASMC) migration was examined. Methods and Results: MV derived from human coronary artery EC (HCAEC) expressing TFWt accelerated HCASMC migration, but was lower with cytoplasmic domain-deleted TF. Furthermore, incubation with TFAsp253-MV, or expression of TFAsp253 in HCASMC, reduced cell migration. Blocking TF-factor VIIa (TF-fVIIa) procoagulant/protease activity, or inhibiting PAR2 signaling on HCASMC, abolished the accelerated migration. Incubation with fVIIa alone increased HCASMC migration, but was significantly enhanced on supplementation with TF. Neither recombinant TF alone, factor Xa, nor PAR2-activating peptide (SLIGKV) influenced cell migration. In other experiments, HCASMC were transfected with peptides corresponding to the cytoplasmic domain of TF prior to stimulation with TF-fVIIa. Cell migration was suppressed only when the peptides were phosphorylated at position of Ser253. Expression of mutant forms of filamin A in HCASMC indicated that the enhancement of migration by TF but not by PDGF-BB, was dependent on the presence of repeat-24 within filamin A. Incubation of HCASMC with TFWt-MV significantly reduced the levels of Smoothelin-B protein, and upregulated FAK expression. Discussion: In conclusion, Ser253-phosphorylated TF and fVIIa released as MV-cargo by EC, act in conjunction with PAR2 on SMC to promote migration and may be crucial for normal arterial homeostasis as well as, during development of vascular disease.

2.
Int Immunopharmacol ; 138: 112567, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38950458

RESUMEN

BACKGROUND: Imbalanced intestinal microbiota and damage to the intestinal barrier contribute to the development of necrotizing enterocolitis (NEC). Autoinducer-2 (AI-2) plays a crucial role in repairing intestinal damage and reducing inflammation. OBJECTIVE: This study aimed to investigate the impact of AI-2 on the expression of intestinal zonula occludens-1 (ZO-1) and occludin proteins in NEC. We evaluated its effects in vivo using NEC mice and in vitro using lipopolysaccharide (LPS)-stimulated intestinal cells. METHODS: Pathological changes in the intestines of neonatal mice were assessed using histological staining and scoring. Cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to determine the optimal conditions for LPS and AI-2 interventions. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to analyze the mRNA levels of matrix metalloproteinase-3 (MMP3), protease activated receptor-2 (PAR2), interleukin-1ß (IL-1ß), and IL-6. Protein levels of MMP3, PAR2, ZO-1, and occludin were evaluated using western blot, immunohistochemistry, or immunofluorescence. RESULTS: AI-2 alleviated NEC-induced intestinal damage (P < 0.05) and enhanced the proliferation of damaged IEC-6 cells (P < 0.05). AI-2 intervention reduced the mRNA and protein expressions of MMP3 and PAR2 in intestinal tissue and cells (P < 0.05). Additionally, it increased the protein levels of ZO-1 and occludin (P < 0.05), while reducing IL-1ß and IL-6 mRNA expression (P < 0.05). CONCLUSION: AI-2 intervention enhances the expression of tight junction proteins (ZO-1 and occludin), mitigates intestinal damage in NEC neonatal mice and IEC-6 cells, potentially by modulating PAR2 and MMP3 signaling. AI-2 holds promise as a protective intervention for NEC. AI-2 plays a crucial role in repairing intestinal damage and reducing inflammation.

3.
Gastroenterology ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004156

RESUMEN

BACKGROUND AND AIMS: The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and included epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS: Seventy-eight healthy subjects (controls) and 223 IBS patients were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin (VEC). Caco-2 or HUVEC monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS: Intestinal epithelial barrier was compromised in IBS patients throughout the gastrointestinal tract. IBS soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in HUVEC monolayers through the activation of protease-activated receptor (PAR)-2 and histone deacetylase (HDAC)11, resulting in VEC downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of IBS patients. CONCLUSION: Epithelial and vascular barriers are compromised in IBS patients and contribute to clinical manifestations.

5.
Bioorg Chem ; 150: 107496, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850590

RESUMEN

Protease-activated receptor 2 (PAR2) has garnered attention as a potential therapeutic target in breast cancer. PAR2 is implicated in the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) via G protein and beta-arrestin pathways, contributing to the proliferation and metastasis of breast cancer cells. Despite the recognized role of PAR2 in breast cancer progression, clinically effective PAR2 antagonists remain elusive. To address this unmet clinical need, we synthesized and evaluated a series of novel compounds that target the orthosteric site of PAR2. Using in silico docking simulations, we identified compound 9a, an optimized derivative of compound 1a ((S)-N-(1-(benzylamino)-1-oxo-3-phenylpropan-2-yl)benzamide), which exhibited enhanced PAR2 antagonistic activity. Subsequent molecular dynamics simulations comparing 9a with the partial agonist 9d revealed that variations in ligand-induced conformational changes and interactions dictated whether the compound acted as an antagonist or agonist of PAR2. The results of this study suggest that further development of 9a could contribute to the advancement of PAR2 antagonists as potential therapeutic agents for breast cancer.

6.
Br J Pharmacol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760890

RESUMEN

BACKGROUND AND PURPOSE: Thrombo-inflammation is a key feature of stroke pathophysiology and provides multiple candidate drug targets. Thrombin exerts coagulation-independent actions via protease-activated receptors (PAR), of which PAR1 has been implicated in stroke-associated neuroinflammation. The role of PAR4 in this context is less clear. This study examined if the selective PAR4 antagonist ML354 provides neuroprotection in experimental stroke and explored the underlying mechanisms. EXPERIMENTAL APPROACH: Mouse primary cortical neurons were exposed to oxygen-glucose deprivation (OGD) and simulated reperfusion ± ML354. For comparison, functional Ca2+-imaging was performed upon acute stimulation with a PAR4 activating peptide or glutamate. Male mice underwent sham operation or transient middle cerebral artery occlusion (tMCAO), with ML354 or vehicle treatment beginning at recanalization. A subset of mice received a platelet-depleting antibody. Stroke size and functional outcomes were assessed. Abundance of target genes, proteins, and cell markers was determined in cultured cells and tissues by qPCR, immunoblotting, and immunofluorescence. KEY RESULTS: Stroke up-regulated PAR4 expression in cortical neurons in vitro and in vivo. OGD augments spontaneous and PAR4-mediated neuronal activity; ML354 suppresses OGD-induced neuronal excitotoxicity and apoptosis. ML354 applied in vivo after tMCAO reduced infarct size, apoptotic markers, macrophage accumulation, and interleukin-1ß expression. Platelet depletion did not affect infarct size in mice with tMCAO ± ML354. CONCLUSIONS AND IMPLICATIONS: Selective PAR4 inhibition during reperfusion improves infarct size and neurological function after experimental stroke by blunting neuronal excitability, apoptosis, and local inflammation. PAR4 antagonists may provide additional neuroprotective benefits in patients with acute stroke beyond their canonical antiplatelet action.

7.
Inflamm Regen ; 44(1): 26, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816842

RESUMEN

The protease activated receptor 2 (Par2) plays a pivotal role in various damage models, influencing injury, proliferation, inflammation, and regeneration. Despite extensive studies, its binary roles- EITHER aggravating injury or promoting recovery-make a conclusive translational decision on its modulation strategy elusive. Analyzing two liver regeneration models, autoimmune hepatitis and direct hepatic damage, we discovered Par2's outcome depends on the injury's nature. In immune-mediated injury, Par2 exacerbates damage, while in direct tissue injury, it promotes regeneration. Subsequently, we evaluated the clinical significance of this finding by investigating Par2's expression in the context of autoimmune diabetes. We found that the absence of Par2 in all lymphocytes provided full protection against the autoimmune destruction of insulin-producing ß-cells in mice, whereas the introduction of a ß-cell-specific Par2 null mutation accelerated the onset of autoimmune diabetes. This pattern led us to hypothesize whether these observations are universal. A comprehensive review of recent Par2 publications across tissues and systems confirms the claim drafted above: Par2's initial activation in the immune system aggravates inflammation, hindering recovery, whereas its primary activation in the damaged tissue fosters regeneration. As a membrane-anchored receptor, Par2 emerges as an attractive drug target. Our findings highlight a crucial translational modulation strategy in regenerative medicine based on injury type.

8.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672649

RESUMEN

Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.

9.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675414

RESUMEN

Inflammation is a distinguished clinical manifestation of COVID-19 and type 2 diabetes mellitus (T2DM), often associated with inflammatory dysfunctions, insulin resistance, metabolic dysregulation, and other complications. The present study aims to test the hypothesis that serum concentrations of PAR-1 levels differ between COVID-19 diabetic patients (T2DM) and non-diabetic COVID-19 patients and determine their association with different biochemical parameters and inflammatory biomarkers. T2DM patients with COVID-19 (n = 50) with glycated hemoglobin (HbA1c) levels of (9.23 ± 1.66) and non-diabetic COVID-19 patients (n = 50) with HbA1c levels (4.39 ± 0.57) were recruited in this study. The serum PAR-1 levels (ELISA method) were determined in both groups and correlated with parameters such as age, BMI, inflammatory markers including CRP, interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), D-dimer, homocysteine, and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Demographic variables such as BMI (29.21 ± 3.52 vs. controls 21.30 ± 2.11) and HbA1c (9.23 ± 1.66 vs. controls 4.39 ± 0.57) were found to be statistically elevated in COVID-19 T2DM patients compared to non-diabetic COVID-19 patients. The concentrations of several inflammatory biomarkers and PAR-1 were remarkably increased in the COVID-19 T2DM group when compared with the non-diabetic COVID-19 group. The univariate analysis revealed that increased serum PAR-1 estimations were positively correlated with enhanced HbA1c, BMI, inflammatory cytokines, D-dimer, homocysteine, and NT-proBNP. The findings in the current study suggest that increased levels of serum PAR-1 in the bloodstream could potentially serve as an independent biomarker of inflammation in COVID-19 patients with T2DM.

10.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612918

RESUMEN

Patients with first-diagnosed atrial fibrillation (FDAF) exhibit major adverse cardiovascular events (MACEs) during follow-up. Preclinical models have demonstrated that thrombo-inflammation mediates adverse cardiac remodeling and atherothrombotic events. We have hypothesized that thrombin activity (FIIa) links coagulation with inflammation and cardiac fibrosis/dysfunction. Surrogate markers of the thrombo-inflammatory response in plasma have not been characterized in FDAF. In this prospective longitudinal study, patients presenting with FDAF (n = 80), and 20 matched controls, were included. FIIa generation and activity in plasma were increased in the patients with early AF compared to the patients with chronic cardiovascular disease without AF (controls; p < 0.0001). This increase was accompanied by elevated biomarkers (ELISA) of platelet and endothelial activation in plasma. Pro-inflammatory peripheral immune cells (TNF-α+ or IL-6+) that expressed FIIa-activated protease-activated receptor 1 (PAR1) (flow cytometry) circulated more frequently in patients with FDAF compared to the controls (p < 0.0001). FIIa activity correlated with cardiac fibrosis (collagen turnover) and cardiac dysfunction (NT-pro ANP/NT-pro BNP) surrogate markers. FIIa activity in plasma was higher in patients with FDAF who experienced MACE. Signaling via FIIa might be a presumed link between the coagulation system (tissue factor-FXa/FIIa-PAR1 axis), inflammation, and pro-fibrotic pathways (thrombo-inflammation) in FDAF.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Estudios Longitudinales , Estudios Prospectivos , Receptor PAR-1 , Biomarcadores , Fibrosis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38652276

RESUMEN

Thrombin inhibition suppresses adiposity, WAT inflammation and metabolic dysfunction in mice. Protease-activated receptor (PAR)1 does not account for thrombin-driven obesity, so we explored the culprit role of PAR4 in this context. Male WT and PAR-4-/- mice received a high fat diet (HFD) for 8 weeks, WT controls received standard chow. Body fat was quantified by NMR. Epididymal WAT was assessed by histology, immunohistochemistry, qPCR and lipase activity assay. 3T3-L1 preadipocytes were differentiated ± thrombin, acutely stimulated ± PAR4 activating peptide (AP) and assessed by immunoblot, qPCR and U937 monocyte adhesion. Epicardial adipose tissue (EAT) from obese and lean patients was assessed by immunoblot. PAR4 was upregulated in mouse WAT under HFD. PAR4-/- mice developed less visceral adiposity and glucose intolerance under HFD, featuring smaller adipocytes, fewer macrophages and lower expression of adipogenic (leptin, PPARγ) and pro-inflammatory genes (CCL2, IL-1ß) in WAT. HFD-modified activity and expression of lipases or perilipin were unaffected by PAR4 deletion. 3T3-L1 adipocytes differentiated with thrombin retained Ki67 expression, further upregulated IL-1ß and CCL2 and were more adhesive for monocytes. In mature adipocytes, PAR4-AP increased phosphorylated ERK1/2 and AKT, upregulated Ki67, CCl2, IL-ß and hyaluronan synthase 1 but not TNF-α mRNA, and augmented hyaluronidase-sensitive monocyte adhesion. Obese human EAT expressed more PAR4, CD68 and CD54 than lean EAT. PAR4 upregulated in obesity supports adipocyte hypertrophy, WAT expansion and thrombo-inflammation. The emerging PAR4 antagonists provide a therapeutic perspective in this context beyond their canonical antiplatelet action.

12.
Chem Biol Drug Des ; 103(5): e14533, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684373

RESUMEN

Hirudin is one of the specific inhibitors of thrombin, which has been confirmed to have strong bioactivities, including inhibiting tumors. However, the function and mechanism of hirudin and protease-activated receptor 1 (PAR-1) in diffuse large B-cell lymphoma (DLBCL) have not been clear. Detecting the expression PAR-1 in DLBCL tissues and cells by RT-qPCR and IHC. Transfected sh-NC, sh-PAR-1, or pcDNA3.1-PAR-1 in DLBCL cells or processed DLBCL cells through added thrombin, Vorapaxar, Recombinant hirudin (RH), or Na2S2O4 and co-culture with EA.hy926. And built DLBCL mice observed tumor growth. Detecting the expression of related genes by RT-qPCR, Western blot, IHC, and immunofluorescence, measured the cellular hypoxia with Hypoxyprobe-1 Kit, and estimated the cell inflammatory factors, proliferation, migration, invasion, and apoptosis by ELISA, CCK-8, flow cytometry, wound-healing and Transwell. Co-immunoprecipitation and pull-down measurement were used to verify the relationship. PAR-1 was highly expressed in DLBCL tissues and cells, especially in SUDHL2. Na2S2O4 induced SUDHL2 hypoxia, and PAR-1 did not influence thrombin-activated hypoxia. PAR-1 could promote SUDHL2 proliferation, migration, and invasion, and it was unrelated to cellular hypoxia. PAR-1 promoted proliferation, migration, and angiogenesis of EA.hy926 or SUDHL2 through up-regulation vascular endothelial growth factor (VEGF). RH inhibited tumor growth, cell proliferation, and migration, promoted apoptosis of DLBCL, and inhibited angiogenesis by down-regulating PAR-1-VEGF. RH inhibits proliferation, migration, and angiogenesis of DLBCL cells by down-regulating PAR-1-VEGF.


Asunto(s)
Apoptosis , Proliferación Celular , Hirudinas , Linfoma de Células B Grandes Difuso , Neovascularización Patológica , Receptor PAR-1 , Proteínas Recombinantes , Factor A de Crecimiento Endotelial Vascular , Humanos , Hirudinas/farmacología , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inhibidores , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Ratones , Línea Celular Tumoral , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Angiogénesis
13.
Am J Physiol Cell Physiol ; 326(6): C1605-C1610, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646783

RESUMEN

G protein-coupled receptors (GPCRs) are ubiquitously expressed cell surface receptors that mediate numerous physiological responses and are highly druggable. Upon activation, GPCRs rapidly couple to heterotrimeric G proteins and are then phosphorylated and internalized from the cell surface. Recent studies indicate that GPCRs not only localize at the plasma membrane but also exist in intracellular compartments where they are competent to signal. Intracellular signaling by GPCRs is best described to occur at endosomes. Several studies have elegantly documented endosomal GPCR-G protein and GPCR-ß-arrestin signaling. Besides phosphorylation, GPCRs are also posttranslationally modified with ubiquitin. GPCR ubiquitination has been studied mainly in the context of receptor endosomal-lysosomal trafficking. However, new studies indicate that ubiquitination of endogenous GPCRs expressed in endothelial cells initiates the assembly of an intracellular p38 mitogen-activated kinase signaling complex that promotes inflammatory responses from endosomes. In this mini-review, we discuss emerging discoveries that provide critical insights into the function of ubiquitination in regulating GPCR inflammatory signaling at endosomes.


Asunto(s)
Endosomas , Inflamación , Receptores Acoplados a Proteínas G , Transducción de Señal , Ubiquitina , Ubiquitinación , Endosomas/metabolismo , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Inflamación/metabolismo , Inflamación/patología , Ubiquitina/metabolismo , Fosforilación
14.
JOR Spine ; 7(2): e1333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660017

RESUMEN

Background: Intervertebral disk (IVD) degeneration affects both humans and canines and is a major cause of low back pain (LBP). Mast cell (MC) and macrophage (MØ) infiltration has been identified in the pathogenesis of IVD degeneration (IVDD) in the human and rodent model but remains understudied in the canine. MC degranulation in the IVD leads to a pro-inflammatory cascade and activates protease activated receptor 2 (PAR2) on IVD cells. The objectives of the present study are to: (1) highlight the pathophysiological changes observed in the degenerate canine IVD, (2) further characterize the inflammatory effect of MCs co-cultured with canine nucleus pulposus (NP) cells, (3) evaluate the effect of construct stiffness on NP and MCs, and (4) identify potential therapeutics to mitigate pathologic changes in the IVD microenvironment. Methods: Canine IVD tissue was isolated from healthy autopsy research dogs (beagle) and pet dogs undergoing laminectomy for IVD herniation. Morphology, protein content, and inflammatory markers were assessed. NP cells isolated from healthy autopsy (Mongrel hounds) tissue were co-cultured with canine MCs within agarose constructs and treated with cromolyn sodium (CS) and PAR2 antagonist (PAR2A). Gene expression, sulfated glycosaminoglycan content, and stiffness of constructs were assessed. Results: CD 31+ blood vessels, mast cell tryptase, and macrophage CD 163+ were increased in the degenerate surgical canine tissue compared to healthy autopsy. Pro-inflammatory genes were upregulated when canine NP cells were co-cultured with MCs and the stiffer microenvironment enhanced these effects. Treatment with CS and PAR2 inhibitors mediated key pro-inflammatory markers in canine NP cells. Conclusion: There is increased MC, MØs, and vascular ingrowth in the degenerate canine IVD tissue, similar to observations in the clinical population with IVDD and LBP. MCs co-cultured with canine NP cells drive inflammation, and CS and PAR2A are potential therapeutics that may mitigate the pathophysiology of IVDD in vitro.

15.
Biomed Pharmacother ; 175: 116622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653114

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) is a challenging autoimmune disease, characterized by an immune system assault on insulin-producing ß-cells. As insulin facilitates glucose absorption into cells and tissues, ß-cell deficiency leads to elevated blood glucose levels on one hand and target-tissues starvation on the other. Despite efforts to halt ß-cell destruction and stimulate recovery, success has been limited. Our recent investigations identified Protease-Activated Receptor 2 (Par2) as a promising target in the battle against autoimmunity. We discovered that Par2 activation's effects depend on its initial activation site: exacerbating the disease within the immune system but fostering regeneration in affected tissue. METHODS: We utilized tissue-specific Par2 knockout mice strains with targeted Par2 mutations in ß-cells, lymphocytes, and the eye retina (as a control) in the NOD autoimmune diabetes model, examining T1D onset and ß-cell survival. RESULTS: We discovered that Par2 expression within the immune system accelerates autoimmune processes, while its presence in ß-cells offers protection against ß-cell destruction and T1D onset. This suggests a dual-strategy treatment for T1D: inhibiting Par2 in the immune system while activating it in ß-cells, offering a promising strategy for T1D. CONCLUSIONS: This study highlights Par2's potential as a drug target for autoimmune diseases, particularly T1D. Our results pave the way for precision medicine approaches in treating autoimmune conditions through targeted Par2 modulation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ratones Endogámicos NOD , Ratones Noqueados , Receptor PAR-2 , Receptor PAR-2/metabolismo , Animales , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Autoinmunidad , Femenino
16.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38526868

RESUMEN

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Ratones , Humanos , Receptor Toll-Like 4/genética , Receptor PAR-2/genética , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología , Antivirales/farmacología , Inhibidores de Serina Proteinasa/farmacología , Inflamación , Serina , Serina Endopeptidasas/genética
17.
Acta Pharm Sin B ; 14(3): 1441-1456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487002

RESUMEN

Excessive and uncontrollable inflammatory responses in alveoli can dramatically exacerbate pulmonary disease progressions through vigorous cytokine releases, immune cell infiltration and protease-driven tissue damages. It is an urgent need to explore potential drug strategies for mitigating lung inflammation. Protease-activated receptor 2 (PAR2) as a vital molecular target principally participates in various inflammatory diseases via intracellular signal transduction. However, it has been rarely reported about the role of PAR2 in lung inflammation. This study applied CRISPR-Cas9 system encoding Cas9 and sgRNA (pCas9-PAR2) for PAR2 knockout and fabricated an anionic human serum albumin-based nanoparticles to deliver pCas9-PAR2 with superior inflammation-targeting efficiency and stability (TAP/pCas9-PAR2). TAP/pCas9-PAR2 robustly facilitated pCas9-PAR2 to enter and transfect inflammatory cells, eliciting precise gene editing of PAR2 in vitro and in vivo. Importantly, PAR2 deficiency by TAP/pCas9-PAR2 effectively and safely promoted macrophage polarization, suppressed pro-inflammatory cytokine releases and alleviated acute lung inflammation, uncovering a novel value of PAR2. It also revealed that PAR2-mediated pulmonary inflammation prevented by TAP/pCas9-PAR2 was mainly dependent on ERK-mediated NLRP3/IL-1ß and NO/iNOS signalling. Therefore, this work indicated PAR2 as a novel target for lung inflammation and provided a potential nanodrug strategy for PAR2 deficiency in treating inflammatory diseases.

18.
J Thromb Haemost ; 22(6): 1715-1726, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508397

RESUMEN

BACKGROUND: Protease-activated receptor 4 (PAR4) mediates thrombin signaling on platelets and other cells. Our recent structural studies demonstrated that a single nucleotide polymorphism in extracellular loop 3 and PAR4-P310L (rs2227376) leads to a hyporeactive receptor. OBJECTIVES: The goal of this study was to determine how the hyporeactive PAR4 variant in extracellular loop 3 impacts platelet function in vivo using a novel knock-in mouse model (PAR4-322L). METHODS: A point mutation was introduced into the PAR4 gene F2rl3 via CRISPR/Cas9 to create PAR4-P322L, the mouse homolog to human PAR4-P310L. Platelet response to PAR4 activation peptide (AYPGKF), thrombin, ADP, and convulxin was monitored by αIIbß3 integrin activation and P-selectin translocation using flow cytometry or platelet aggregation. In vivo responses were determined by the tail bleeding assay and the ferric chloride-induced carotid artery injury model. RESULTS: PAR4-P/L and PAR4-L/L platelets had a reduced response to AYPGKF and thrombin measured by P-selectin translocation or αIIbß3 activation. The response to ADP and convulxin was unchanged among genotypes. In addition, both PAR4-P/L and PAR4-L/L platelets showed a reduced response to thrombin in aggregation studies. There was an increase in the tail bleeding time for PAR4-L/L mice. The PAR4-P/L and PAR4-L/L mice both showed an extended time to arterial thrombosis. CONCLUSION: PAR4-322L significantly reduced platelet responsiveness to AYPGKF and thrombin, which is in agreement with our previous structural and cell signaling studies. In addition, PAR4-322L had prolonged arterial thrombosis time. Our mouse model provides a foundation to further evaluate the role of PAR4 in other pathophysiological contexts.


Asunto(s)
Plaquetas , Ratones Endogámicos C57BL , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Receptores de Trombina , Trombina , Animales , Plaquetas/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Trombina/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Modelos Animales de Enfermedad , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/toxicidad , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Selectina-P/metabolismo , Selectina-P/genética , Mutación Puntual , Técnicas de Sustitución del Gen , Transducción de Señal , Trombosis/genética , Trombosis/sangre , Masculino , Cloruros , Ratones , Activación Plaquetaria , Sistemas CRISPR-Cas , Humanos , Fenotipo , Compuestos Férricos , Oligopéptidos , Lectinas Tipo C , Receptores Proteinasa-Activados
19.
J Cell Mol Med ; 28(3): e18099, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38164021

RESUMEN

Our previous study found that miR-26a alleviates aldosterone-induced tubulointerstitial fibrosis (TIF). However, the effect of miR-26a on TIF in diabetic kidney disease (DKD) remains unclear. This study clarifies the role and possible mechanism of exogenous miR-26a in controlling the progression of TIF in DKD models. Firstly, we showed that miR-26a was markedly decreased in type 2 diabetic db/db mice and mouse tubular epithelial cells (mTECs) treated with high glucose (HG, 30 mM) using RT-qPCR. We then used adeno-associated virus carrying miR-26a and adenovirus miR-26a to enhance the expression of miR-26a in vivo and in vitro. Overexpressing miR-26a alleviated the TIF in db/db mice and the extracellular matrix (ECM) deposition in HG-stimulated mTECs. These protective effects were caused by reducing expression of protease-activated receptor 4 (PAR4), which involved in multiple pro-fibrotic pathways. The rescue of PAR4 expression reversed the anti-fibrosis activity of miR-26a. We conclude that miR-26a alleviates TIF in DKD models by directly targeting PAR4, which may provide a novel molecular strategy for DKD therapy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Animales , Ratones , Nefropatías Diabéticas/metabolismo , Fibrosis , MicroARNs/metabolismo , Receptores de Trombina
20.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279255

RESUMEN

Endothelial protein C receptor (EPCR) is a receptor for the natural anti-coagulant activated protein C (aPC). It mediates the anti-inflammatory and barrier-protective functions of aPC through the cleavage of protease-activated receptor (PAR)1/2. Allergic contact dermatitis is a common skin disease characterized by inflammation and defective skin barrier. This study investigated the effect of EPCR and 3K3A-aPC on allergic contact dermatitis using a contact hypersensitivity (CHS) model. CHS was induced using 1-Fluoro-2,4-dinitrobenzene in EPCR-deficient (KO) and matched wild-type mice and mice treated with 3K3A-aPC, a mutant form of aPC with diminished anti-coagulant activity. Changes in clinical and histological features, cytokines, and immune cells were examined. EPCRKO mice displayed more severe CHS, with increased immune cell infiltration in the skin and higher levels of inflammatory cytokines and IgE than wild-type mice. EPCR, aPC, and PAR1/2 were expressed by the skin epidermis, with EPCR presenting almost exclusively in the basal layer. EPCRKO increased the epidermal expression of aPC and PAR1, whereas in CHS, their expression was reduced compared to wild-type mice. 3K3A-aPC reduced CHS severity in wild-type and EPCRKO mice by suppressing immune cell infiltration/activation and inflammatory cytokines. In summary, EPCRKO exacerbated CHS, whereas 3K3A-aPC could reduce the severity of CHS in both EPCRKO and wild-type mice.


Asunto(s)
Dermatitis Alérgica por Contacto , Proteína C , Proteínas Recombinantes , Animales , Ratones , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Receptor PAR-1/metabolismo , Transducción de Señal , Citocinas/farmacología , Dermatitis Alérgica por Contacto/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...