Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 694
Filtrar
1.
Front Microbiol ; 15: 1431063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113833

RESUMEN

Introduction: T-sheep and H-sheep exhibit different environmental adaptability and production performance. The rumen microbiome has co-evolved with hosts and plays a vital role in nutrient digestion and energy metabolism. In our previous study, we found that T-sheep have a higher efficiency in energy metabolism than H-sheep, but the rumen microbial community remains unclear. Methods: In this study, we determined the rumen bacterial profile and rumen fermentation parameters to reveal the bacterial profiles and predictive functions among breeds and diets with four different energy levels, as well as the correlation between bacterial profiles and rumen fermentation characteristics. Results: The results showed that the rumen total volatile fatty acids (VFAs), acetate, butyrate, total branched-chain VFAs, iso-butyrate, and iso-valerate were higher in T-sheep than H-sheep. The alpha diversity of ruminal bacteria is not affected by dietary energy, but it shows a distinction between the sheep breeds. Specifically, T-sheep rumen bacteria exhibit higher alpha diversity than H-sheep. The beta diversity of ruminal bacteria is not influenced by dietary energy or sheep breeds, indicating similar communities of ruminal bacteria between different diets and sheep breeds. The phyla of Bacteroidetes and Firmicutes predominate in the rumen, with a higher relative abundance of Firmicutes observed in T-sheep than H-sheep. The two most abundant genera in the rumen were Prevotella 1 and Rikenellaceae RC9 gut group. Prevotella 1 is the predominant bacterial genus in the rumen of H-sheep, while the Rikenellaceae RC9 gut group dominates in the rumen of T-sheep. Microbial co-occurrence network analysis reveals that variations in rumen fermentation characteristics result from differences in module abundance, with a higher abundance of VFA-producing modules observed in the rumen of T-sheep. Microbial function prediction analysis showed that dietary energy rarely alters the functional composition of rumen bacteria. However, there were differences in the functions of rumen bacteria between sheep breeds, with T-sheep showing a greater emphasis on energy metabolism-related functions, while H-sheep showed a greater emphasis on protein metabolism-related functions. Discussion: These findings provide evidence of the special rumen microbial community that helps T-sheep efficiently obtain energy from low-protein and low-energy diets, enabling them to survive in the extreme environment of the Qinghai-Tibet Plateau.

2.
Sci Rep ; 14(1): 19227, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164365

RESUMEN

Maternal malnutrition has been associated with neurodevelopmental deficits and long-term implications on the offspring's health and behavior. Here, we investigated the effects of maternal low-protein diet (LPD) or obesity-inducing maternal high-fat diet (HFD) on dyadic social interactions, group organization and autism-related behaviors in mice. We found that maternal HFD induced an autism-related behavioral phenotype in the male offspring, including a robust decrease in sociability, increased aggression, cognitive rigidity and repetitive behaviors. Maternal LPD led to a milder yet significant effect on autism-related symptoms, with no effects on olfactory-mediated social behavior. Under naturalistic conditions in a group setting, this manifested in altered behavioral repertoires, increased magnitude in dominance relations, and reduced interactions with novel social stimuli in the HFD male offspring, but not in the LPD offspring. Finally, we found HFD-induced transcriptomic changes in the olfactory bulbs of the male offspring. Together, our findings show that maternal malnutrition induces long-lasting effects on aggression and autism-related behaviors in male offspring, and potential impairments in brain regions processing chemosensory signals.


Asunto(s)
Trastorno Autístico , Conducta Animal , Dieta Alta en Grasa , Dieta con Restricción de Proteínas , Conducta Social , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Ratones , Trastorno Autístico/etiología , Trastorno Autístico/metabolismo , Embarazo , Dieta con Restricción de Proteínas/efectos adversos , Agresión , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Fenómenos Fisiologicos Nutricionales Maternos , Bulbo Olfatorio/metabolismo , Modelos Animales de Enfermedad , Obesidad/metabolismo , Obesidad/etiología
3.
J Family Community Med ; 31(3): 237-243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176010

RESUMEN

BACKGROUND: The benefits of dietary macronutrients for weight management depend on the integrity of gut hormones. The role of food temperature in the release of satiety hormones and satiety needs elucidation. We aimed to determine the impact of different food temperatures with varying macronutrient compositions on satiety-related gut hormones glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) and find the correlation of satiety hormones with appetite scores and remainder-day food (energy) intake. MATERIALS AND METHODS: Thirteen healthy participants (eight males and five females) aged 25-35 years with body mass index 18.5-24.9 kg/m2 with no medical illnesses or eating disorders consumed three compositions of meals (high carbohydrate, high fat, and high protein meals) each at three temperatures (cold, warm, and hot) in a randomized, double-blinded, controlled crossover design. Plasma concentrations of peptide hormones were determined at 0, 30, and 240 minutes by enzyme-linked immunosorbent assay, and 24-hours food recall was used for remainder-day food intake (remainder energy). Data were analyzed using SPSS version 27.0. The change in plasma levels of gut hormones with time was assessed using Friedman test; Kruskal-Wallis test was employed to compare GLP-1 and CCK hormonal levels across nine meals. RESULTS: A comparison of the three meals at the three temperatures (total of nine groups), showed that the GLP-1 and CCK plasma concentrations were significantly different (P < 0.001). GLP-1 and CCK responses increased more after hot meals than cold meals. Overall, high-fat meals had more effective gut hormone secretions. The area under the curve was increased for GLP-1 in high-fat meals and for CCK in hot meals. The peptide hormones (GLP-1 and CCK) were positively correlated with satiety scores and inversely with remainder food intake. CONCLUSION: The temperature of food was found to be an effective stimulus for the regulation of CCK and GLP-1 secretion. Hot food temperature increased satiety hormones (CCK and GLP-1), independent of food macronutrient composition.

4.
Biochem Biophys Res Commun ; 739: 150594, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39191148

RESUMEN

When amino acids are plentiful in the diet, the liver upregulates most enzymes responsible for amino acid degradation. In particular, the activity of urea cycle enzymes increases in response to high-protein diets to facilitate the excretion of excess nitrogen. KLF15 has been established as a critical regulator of amino acid catabolism including ureagenesis and we have recently identified FoxO transcription factors as an important upstream regulator of KLF15 in the liver. Therefore, we explored the role of FoxOs in amino acid metabolism under high-protein diet. Our findings revealed that the concentrations of two urea cycle-related amino acids, arginine and ornithine, were significantly altered by FoxOs knockdown. Additionally, using KLF15 knockout mice and an in vivo Ad-luc analytical system, we confirmed that FoxOs directly regulate hepatic Ass1 expression under high-protein intake independently from KLF15. Moreover, ChIP analysis showed that the high-protein diet increased FoxOs DNA binding without altering the nuclear protein amount. Therefore, FoxOs play a direct role in regulating ureagenesis via a KLF15-independent pathway in response to high-protein intake.

5.
Endocrine ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102111

RESUMEN

PURPOSE: The purpose of this study is to evaluate the effect of a high protein and low glycemic load diet in preventing weight gain after kidney transplantation. METHODS: We designed a prospective, single-center, open-label, randomized controlled study to compare the efficacy of a high protein (1.3-1.4 g/kg/day) and low glycemic load diet versus a conventional diet (0.8-1.0 g/kg/day of protein and no recommendations on glycemic load) in preventing weight gain (ClinicalTrials.gov identifier: NCT02883777). A total of 120 patients were evaluated. Patients were followed for 12 months, and the primary outcome was weight maintenance or weight gain lower than 5%. RESULTS: There were no differences in total energy intake, carbohydrates, and total fats between groups. Intervention group (IG) increased protein intake to 1.38 ± 0.56 g/kg/day and decreased the glycemic load to 87.27 ± 4.54 g/day, while control group (CG) had a dietary protein intake of 1.19 ± 0.43 g/kg/day and a glycemic load of 115.60 ± 7.01 g/day. Total fiber intake was greater and trans-fat was lower in IG. Dietetic cholesterol increased in IG over time and was significantly different between groups. Overall, patients had an increase in body weight over time, with a mean increment of 4.1 ± 5.5 kg (5.75%). The percentage of patients who achieved the primary outcome was 50% of sample size, without differences between groups. The glomerular filtration rate improved over time in both groups. Considering 24-h proteinuria and albuminuria, a similar rise was observed in both groups. CONCLUSION: The present dietary intervention was safe, but had no effect on weight gain in kidney transplant subjects. Our findings suggest that other strategies, including alternative dietary and/or pharmacological and psychological interventions might be tested in randomized control trials in order to improve patients' body weight outcomes after transplant.

6.
Brain Commun ; 6(4): fcae255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130514

RESUMEN

Cerebral toxoplasmosis, the most common opportunistic infection in immunocompromised individuals, is increasingly reported in immunocompetent individuals due to mutant strains of Toxoplasma gondii, which, furthermore, are reported to be resistant to available treatments. We assessed the therapeutic potential of Garcinia kola, a medicinal plant reported to have antiplasmodial and neuroprotective properties, against experimental toxoplasmosis in rats. Severe toxoplasmosis was induced in male Wistar rats (156.7 ± 4.1 g) by injecting them with 10 million tachyzoites in suspension in 500 µl of saline (intraperitoneal), and exclusive feeding with a low-protein diet [7% protein (weight by weight)]. Then, animals were treated with hexane, dichloromethane, and ethyl acetate fractions of Garcinia kola. Footprints were analysed and open-field and elevated plus maze ethological tests were performed when symptoms of severe disease were observed in the infected controls. After sacrifice, blood samples were processed for Giemsa staining, organs were processed for haematoxylin and eosin staining, and brains were processed for Nissl staining and cell counting. Compared with non-infected animals, the infected control animals had significantly lower body weights (30.27%↓, P = 0.001), higher body temperatures (P = 0.033) during the sacrifice, together with signs of cognitive impairment and neurologic deficits such as lower open-field arena centre entries (P < 0.001), elevated plus maze open-arm time (P = 0.029) and decreased stride lengths and step widths (P < 0.001), as well as neuronal loss in various brain areas. The ethyl acetate fraction of Garcinia kola prevented or mitigated most of these signs. Our data suggest that the ethyl acetate fraction of Garcinia kola has therapeutic potential against cerebral toxoplasmosis.

7.
Front Nutr ; 11: 1383658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988853

RESUMEN

Background: High dietary protein intake exacerbates proteinuria in individuals with diabetic kidney disease (DKD). However, studies on the impacts of low protein diet (LPD) on DKD have yielded conflicting results. Furthermore, patient compliance to continuous protein restriction is challenging. Objective: The current study aims to investigate the effects of intermittent protein restriction (IPR) on disease progression of DKD. Methods: Diabetic KK-Ay mice were used in this study. For the IPR treatment, three consecutive days of LPD were followed by four consecutive days of normal protein diet (NPD) within each week. For early intervention, mice received IPR before DKD onset. For late intervention, mice received IPR after DKD onset. In both experiments, age-matched mice fed continuous NPD served as the control group. Kidney morphology, structure and function of mice in different groups were examined. Results: Intermittent protein restriction before DKD onset ameliorated pathological changes in kidney, including nephromegaly, glomerular hyperfiltration, tubular injuries and proteinuria, without improving glycemic control. Meanwhile, IPR initiated after DKD onset showed no renoprotective effects despite improved glucose homeostasis. Conclusion: Intermittent protein restriction before rather than after DKD onset protects kidneys, and the impacts of IPR on the kidneys are independent of glycemic control. IPR shows promise as an effective strategy for managing DKD and improving patient compliance.

8.
Sci Rep ; 14(1): 16883, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043767

RESUMEN

The state of Maternal Protein Malnutrition (MPM) is associated with several deleterious effects, including inflammatory processes and dysregulation in oxidative balance, which can promote neurodegeneration. On the other hand, it is known that aerobic exercise can promote systemic health benefits, combating numerous chronic diseases. Therefore, we evaluate the effect of aerobic exercise training (AET) on indicators of mitochondrial bioenergetics, oxidative balance, endoplasmic reticulum stress, and neurotrophic factor in the prefrontal cortex of malnourished juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17% or 8% casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein Control (LS), Low-Protein Trained (LT), Normoprotein Control (NS), and Normoprotein Trained (NT). The trained groups performed an AET for 4 weeks, 5 days a week, 1 h a day per session. At 60 days of life, the animals were sacrificed and the skeletal muscle, and prefrontal cortex (PFC) were removed to evaluate the oxidative metabolism markers and gene expression of ATF-6, GRP78, PERK and BDNF. Our results showed that MPM impairs oxidative metabolism associated with higher oxidative and reticulum stress. However, AET restored the levels of indicators of mitochondrial bioenergetics, in addition to promoting resilience to cellular stress. AET at moderate intensity for 4 weeks in young Wistar rats can act as a non-pharmacological intervention in fighting against the deleterious effects of a protein-restricted maternal diet.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Mitocondrias , Estrés Oxidativo , Condicionamiento Físico Animal , Ratas Wistar , Animales , Femenino , Ratas , Mitocondrias/metabolismo , Embarazo , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estrés del Retículo Endoplásmico , Biomarcadores/metabolismo , Corteza Prefrontal/metabolismo , Músculo Esquelético/metabolismo , Desnutrición/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Factor de Transcripción Activador 6/metabolismo
9.
Arch Anim Nutr ; 78(2): 192-207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39047153

RESUMEN

A 4-week study was conducted to evaluate the effects of dietary crude protein (CP) content and resistant starch (RS) supplementation on growth performance, intestinal histomorphology and microbial metabolites of weaned pigs. A total of 96 pigs (7.06 ± 0.45 kg body weight) were assigned to 1 of 4 diets in a randomised complete block design involving a 2 (CP levels) × 2 (without or with RS) factorial arrangement to give 8 replicate pens and 3 pigs per pen. Body weight and feed disappearance were recorded weekly, and the faecal consistency score was determined every morning. Blood was sampled on days 1, 14 and 28 from one pig per pen, and the same pig was euthanised on day 28 to collect ileal tissue and ileal and colon digesta. Data were analysed using the MIXED procedure of SAS. The average daily gain and gain:feed ratio were lower (p < 0.05) in pigs fed low crude protein (LCP) diets compared to those fed high CP (HCP) diets during week 3 and overall period. The analysed Lys, Met+Cys and Thr in feed were lower than calculated values, particularly in LCP diets, which may have affected performance. Pigs fed the LCP diets had longer (p < 0.05) ileal villi and higher villus height to crypt depth ratios than those fed the HCP diets, and RS supplementation increased (p < 0.05) ileal villus height. Interactions (p < 0.05) between dietary CP content and RS inclusion were observed for short-chain fatty acid concentration in the ileum and colon in phase 2. There was no difference in propionic acid (ileum) or butyric acid (colon) concentrations among pigs fed HCP diets, however, the butyric acid concentration increased in pigs fed the LCP diet when supplemented with RS. Reducing dietary CP lowered (p < 0.05) faecal score, plasma urea nitrogen and digesta ammonia content. Overall, feeding LCP diets reduced growth performance but improved gut morphology in weaned pigs. Feeding the LCP diet with RS supplementation modulated concentrations of ileal propionic acid and colonic butyric acid in weaned pigs.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Proteínas en la Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Distribución Aleatoria , Sus scrofa/fisiología , Sus scrofa/crecimiento & desarrollo , Sus scrofa/anatomía & histología , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Almidón/metabolismo , Almidón/administración & dosificación , Destete , Femenino , Porcinos/crecimiento & desarrollo , Porcinos/fisiología
10.
Cell Rep ; 43(8): 114493, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39028622

RESUMEN

Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.

11.
Anim Nutr ; 18: 57-71, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39035982

RESUMEN

Dietary nutrient manipulation (e.g. protein fractions) could lower the environmental footprints of ruminants, especially reactive nitrogen (N). This study investigated the impacts of dietary soluble protein (SP) levels with decreased crude protein (CP) on intestinal N absorption, hindgut N metabolism, fecal microbiota and metabolites, and their linkage with N metabolism phenotype. Thirty-two male Hu sheep, with an age of six months and an initial BW of 40.37 ± 1.18 kg, were randomly assigned to four dietary groups. The control diet (CON), aligning with NRC standards, maintained a CP content of 16.7% on a dry matter basis. Conversely, the experimental diets (LPA, LPB, and LPC) featured a 10% reduction in CP compared with CON, accompanied by SP adjustments to 21.2%, 25.9%, and 29.4% of CP, respectively. Our results showed that low-protein diets led to significant reductions in the concentrations of plasma creatinine, ammonia, urea N, and fecal total short-chain fatty acids (SCFA) (P < 0.05). Notably, LPB and LPC exhibited increased total SCFA and propionate concentrations compared with LPA (P < 0.05). The enrichment of the Prevotella genus in fecal microbiota associated with energy metabolism and amino acid (AA) biosynthesis pathways was evident with SP levels in low-protein diets of approximately 25% to 30%. Moreover, LPB and LPC diets demonstrated a decrease in fecal NH 4 + -N and NO 2 - -N contents as well as urease activity, compared with CON (P < 0.05). Concomitantly, reductions in fecal glutamic acid dehydrogenase gene (gdh), nitrite reductase gene (nirS), and nitric oxide reductase gene (norB) abundances were observed (P < 0.05), pointing towards a potential reduction in reactive N production at the source. Of significance, the up-regulation of mRNA abundance of AA and peptide transporters in the small intestine (duodenum, jejunum, and ileum) and the elevated concentration of plasma AA (e.g. arginine, methionine, aspartate, glutamate, etc.) underscored the enhancement of N absorption and N efficiency. In summary, a 10% reduction in CP, coupled with an SP level of approximately 25% to 30%, demonstrated the potential to curtail reactive N emissions through fecal Prevotella enrichment and improve intestinal energy and N utilization efficiency.

12.
Nutrients ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39064671

RESUMEN

Low-protein diets (LPDs) seem to improve metabolic complications of advanced CKD, thus postponing kidney replacement therapy (KRT) initiation. However, the nutritional safety of LPDs remains debatable in patients with diabetic kidney disease (DKD), especially in the elderly. This is a sub-analysis of a prospective unicentric interventional study which assessed the effects of LPD in patients with advanced DKD, focusing on the feasibility and safety of LPD in elderly patients. Ninety-two patients with DKD and stable CKD stage 4+, proteinuria >3 g/g creatininuria, good nutritional status, with confirmed compliance to protein restriction, were enrolled and received LPD (0.6 g mixed proteins/kg-day) supplemented with ketoanalogues of essential amino acids for 12 months. Of the total group, 42% were elderly with a median eGFR 12.6 mL/min and a median proteinuria 5.14 g/g creatininuria. In elderly patients, proteinuria decreased by 70% compared to baseline. The rate of kidney function decline was 0.1 versus 0.5 mL/min-month before enrolment. Vascular events occurred in 15% of cases, not related to nutritional intervention, but to the severity of CKD and higher MAP. LPDs seem to be safe and effective in postponing KRT in elderly patients with advanced DKD while preserving the nutritional status.


Asunto(s)
Nefropatías Diabéticas , Dieta con Restricción de Proteínas , Proteinuria , Humanos , Dieta con Restricción de Proteínas/métodos , Anciano , Masculino , Femenino , Nefropatías Diabéticas/dietoterapia , Estudios Prospectivos , Proteinuria/dietoterapia , Persona de Mediana Edad , Anciano de 80 o más Años , Tasa de Filtración Glomerular , Resultado del Tratamiento , Estado Nutricional , Insuficiencia Renal Crónica/dietoterapia , Aminoácidos Esenciales/administración & dosificación
13.
Nutrients ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064732

RESUMEN

Bone metabolism is a process in which osteoclasts continuously clear old bone and osteoblasts form osteoid and mineralization within basic multicellular units, which are in a dynamic balance. The process of bone metabolism is affected by many factors, including diet. Reasonable dietary patterns play a vital role in the prevention and treatment of bone-related diseases. In recent years, dietary patterns have changed dramatically. With the continuous improvement in the quality of life, high amounts of sugar, fat and protein have become a part of people's daily diets. However, people have gradually realized the importance of a healthy diet, intermittent fasting, calorie restriction, a vegetarian diet, and moderate exercise. Although these dietary patterns have traditionally been considered healthy, their true impact on bone health are still unclear. Studies have found that caloric restriction and a vegetarian diet can reduce bone mass, the negative impact of a high-sugar and high-fat dietary (HSFD) pattern on bone health is far greater than the positive impact of the mechanical load, and the relationship between a high-protein diet (HPD) and bone health remains controversial. Calcium, vitamin D, and dairy products play an important role in preventing bone loss. In this article, we further explore the relationship between different dietary patterns and bone health, and provide a reference for how to choose the appropriate dietary pattern in the future and for how to prevent bone loss caused by long-term poor dietary patterns in children, adolescents, and the elderly. In addition, this review provides dietary references for the clinical treatment of bone-related diseases and suggests that health policy makers should consider dietary measures to prevent and treat bone loss.


Asunto(s)
Huesos , Humanos , Huesos/metabolismo , Dieta , Densidad Ósea , Dieta Saludable/métodos , Dieta Vegetariana , Restricción Calórica , Vitamina D/administración & dosificación , Calcio de la Dieta/administración & dosificación , Conducta Alimentaria/fisiología , Femenino , Niño , Masculino , Dieta Rica en Proteínas , Patrones Dietéticos
14.
Sci Rep ; 14(1): 15071, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956192

RESUMEN

The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve outcomes after aneurysmal subarachnoid hemorrhage We sought to identify specific metabolites mediating these effects. Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N = 12) or HPRO + NMES (N = 12) and at 7 days. Untargeted metabolomics were performed for each plasma sample. Sparse partial least squared discriminant analysis identified metabolites differentiating each group. Correlation coefficients were calculated between each metabolite and total protein per day and muscle volume. Multivariable models determined associations between metabolites and muscle volume. Unique metabolites (18) were identified differentiating SOC from HPRO + NMES. Of these, 9 had significant positive correlations with protein intake. In multivariable models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95% CI 1.01, 1.16)] and quadricep [OR 1.08 (95% CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95% CI 1.01, 1.09)] and quadricep [OR 1.04 (95% CI 1.00, 1.07)] muscle volume. N-acetylserine and ß-hydroxyisovaleroylcarnitine were associated with preserved temporalis or quadricep volume. Metabolites defining HPRO + NMES had strong correlations with protein intake and were associated with preserved muscle volume.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hemorragia Subaracnoidea/terapia , Hemorragia Subaracnoidea/complicaciones , Dieta Rica en Proteínas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Metabolómica/métodos , Atrofia Muscular/etiología , Terapia por Estimulación Eléctrica/métodos , Anciano , Metaboloma , Suplementos Dietéticos
15.
J Anim Sci Biotechnol ; 15(1): 98, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987834

RESUMEN

BACKGROUND: The energy/protein imbalance in a low-protein diet induces lipid metabolism disorders in late-phase laying hens. Reducing energy levels in the low-protein diet to adjust the energy-to-protein ratio may improve fat deposition, but this also decreases the laying performance of hens. This study investigated the mechanism by which different energy levels in the low-protein diet influences liver lipid metabolism in late-phase laying hens through the enterohepatic axis to guide feed optimization and nutrition strategies. A total of 288 laying hens were randomly allocated to the normal-energy and normal-protein diet group (positive control: CK) or 1 of 3 groups: low-energy and low-protein diet (LL), normal-energy and low-protein diet (NL), and high-energy and low-protein diet (HL) groups. The energy-to-protein ratios of the CK, LL, NL, and HL diets were 0.67, 0.74, 0.77, and 0.80, respectively. RESULTS: Compared with the CK group, egg quality deteriorated with increasing energy intake in late-phase laying hens fed low-protein diet. Hens fed LL, NL, and HL diets had significantly higher triglyceride, total cholesterol, acetyl-CoA carboxylase, and fatty acid synthase levels, but significantly lower hepatic lipase levels compared with the CK group. Liver transcriptome sequencing revealed that genes involved in fatty acid beta-oxidation (ACOX1, HADHA, EHHADH, and ACAA1) were downregulated, whereas genes related to fatty acid synthesis (SCD, FASN, and ACACA) were upregulated in LL group compared with the CK group. Comparison of the cecal microbiome showed that in hens fed an LL diet, Lactobacillus and Desulfovibrio were enriched, whereas riboflavin metabolism was suppressed. Cecal metabolites that were most significantly affected by the LL diet included several vitamins, such as riboflavin (vitamin B2), pantethine (vitamin B5 derivative), pyridoxine (vitamin B6), and 4-pyridoxic acid. CONCLUSION: A lipid metabolism disorder due to deficiencies of vitamin B2 and pantethine originating from the metabolism of the cecal microbiome may be the underlying reason for fat accumulation in the liver of late-phase laying hens fed an LL diet. Based on the present study, we propose that targeting vitamin B2 and pantethine (vitamin B5 derivative) might be an effective strategy for improving lipid metabolism in late-phase laying hens fed a low-protein diet.

16.
Endocr Metab Immune Disord Drug Targets ; : e060324227740, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38988067

RESUMEN

BACKGROUND: Polycystic Ovary Syndrome (PCOS) is a highly prevalent, complex, heterogeneous, polygenic endocrine disorder characterized by metabolic and reproductive dysfunction that affects 8-13% of women of reproductive age worldwide. The pathogenesis of PCOS has not been fully clarified and includes genetics, obesity, and insulin resistance (IR). Oxidative stress (OS) of PCOS is independent of obesity. It can induce IR through post-insulin receptor defects, impair glucose uptake in muscle and adipose tissue, and exacerbate IR by reducing insulin secretion from pancreatic ß-cells. OBJECTIVE: To investigate the effects of Calorie Restricted Diet (CRD), High Protein Diet (HPD), and High Protein and High Dietary Fiber Diet (HPD+HDF) on body composition, insulin resistance, and oxidative stress in overweight/obese PCOS patients. METHODS: A total of 90 overweight/obese patients with PCOS were selected to receive an 8- week medical nutrition weight loss intervention at our First Hospital of Peking University, and we randomly divided them into the CRD group (group A), the HPD group (group B), and the HPD+HDF group (group C), with 30 patients in each group. We measured their body composition, HOMA-IR index, and oxidative stress indicators. The t-test, Mann-Whitney U test, analysis of variance (ANOVA), and Kruskal-Wallis H test were used to compare the efficacy of the three methods. RESULTS: After eight weeks, the body weights of the three groups decreased by 6.32%, 5.70% and 7.24%, respectively, and the Visceral Fat Area (VFA) values decreased by 6.8 cm2, 13.4 cm2 and 23.45 cm2, respectively, especially in group C (p >0.05). The lean body mass (LBM), also known as the Fat-Free Mass (FFM) values of group B and group C after weight loss, were higher than that of group A (p >0.05). After weight loss, the homeostatic model assessment of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) were decreased. Superoxide dismutase (SOD) was increased in all three groups (p >0.05), and the changes in SOD and MDA in group B and group C were more significant (p >0.05). HOMA-IR index positively correlated with body mass index (BMI) (r=0.195; p >0.05); MDA positively correlated with percent of body fat (PBF) (r=0.186; p >0.05) and HOMA-IR index (r=0.422; p >0.01); SOD positively correlated with LMI/FFMI (r=0.195; p >0.05), negatively correlated with HOMA-IR index (r=-0.433; p >0.01). CONCLUSION: All three diets were effective in reducing the body weight of overweight/obese patients with PCOS by more than 5% within 8 weeks and could improve both insulin resistance and oxidative stress damage. Compared with CRD, HPD and HPD+HDF diets could better retain lean body mass and significantly improve oxidative stress damage. CLINICAL TRIAL NUMBER: ChiCTR2100054961.

17.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000480

RESUMEN

The regulation of the circadian clock plays an important role in influencing physiological conditions. While it is reported that the timing and quantity of energy intake impact circadian regulation, the underlying mechanisms remain unclear. This study investigated the impact of dietary protein intake on peripheral clocks. Firstly, transcriptomic analysis was conducted to investigate molecular targets of low-protein intake. Secondly, mPer2::Luc knock-in mice, fed with either a low-protein, normal, or high-protein diet for 6 weeks, were analyzed for the oscillation of PER2 expression in peripheral tissues and for the expression profiles of circadian and metabolic genes. Lastly, the candidate pathway identified by the in vivo analysis was validated using AML12 cells. As a result, using transcriptomic analysis, we found that the low-protein diet hardly altered the circadian rhythm in the central clock. In animal experiments, expression levels and period lengths of PER2 were different in peripheral tissues depending on dietary protein intake; moreover, mRNA levels of clock-controlled genes and endoplasmic reticulum (ER) stress genes were affected by dietary protein intake. Induction of ER stress in AML12 cells caused an increased amplitude of Clock and Bmal1 and an advanced peak phase of Per2. This result shows that the intake of different dietary protein ratios causes an alteration of the circadian rhythm, especially in the peripheral clock of mice. Dietary protein intake modifies the oscillation of ER stress genes, which may play key roles in the regulation of the circadian clock.


Asunto(s)
Ritmo Circadiano , Proteínas en la Dieta , Proteínas Circadianas Period , Animales , Ratones , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas en la Dieta/administración & dosificación , Estrés del Retículo Endoplásmico , Relojes Circadianos/genética , Masculino , Ratones Endogámicos C57BL , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Perfilación de la Expresión Génica , Línea Celular , Transcriptoma
18.
J Anim Sci Technol ; 66(3): 482-492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38975578

RESUMEN

Achyranthes japonica extract (AJE) is a multifuctional products that express anti-inflammatory, antioxidant and anti-microbial properties. This study was aimed to evaluate the effects of AJE addition to standard and low crude protein (LCP) diet on growth performance, nutrient digestibility, excreta bacterial count, excreta noxious gas emissions, breast meat quality, and organ weight of broiler chicken. A total of 340 one-day-old Ross 308 broilers [initial body weight (BW) of 43.10 ± 1.46 g, 5 replicate cages per treatment, and 17 birds per cage] were randomly distributed into 1 of 4 dietary treatment groups for a 35 day trial. The diets were provided based on three age stage of the broiler. In the starter stage broiler were fed basal diet. Experimental diet were fed to broiler from day 8 to 35. In growing (days 8-21) and finishing (days 22-35) stage broiler were fed: Standard crude protein (SCP) diet and LCP diet with 0.025% and 0.05% of AJE supplementation respectively. Here, the SCP and LCP diets were 21.50% and 20.86% CP during days 8-21 and 20.00% and 19.40% CP during days 22-35, respectively. The SCP diets with 0.025% AJE supplementation resulted in higher (p < 0.5) BW gain (BWG) at finishing stage and a tendency to lower feed conversion ratio and BWG in the overall period compared to LCP diets with or without AJE supplemenation. Moreover, dry matter and nitrogen digestibility were increased with SCP diet along with 0.025% of AJE. No significant difference was found in meat quality parameters except for pH. Interestingly, the NH3 gas emission to the environment was found to be less with different levels of CP and AJE supplementation. Therefore, we concluded that the addition of 0.025% AJE to the SCP diet improved broiler growth performance and nutrient digestibility with low fecal NH3 emissions.

19.
J Ren Nutr ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897368

RESUMEN

OBJECTS: Eggs are a useful and cheap food source. We evaluated the effects of egg white meal on anemia in dialysis patients. METHODS: In an open-label, clinical trial, conducted in dialysis centers, 107 hemodialysis patients aged ≥18 years with hemoglobin levels below 12 g/dL and requiring treatment with artificial erythropoietin and iron infusion were included in the study. They were divided into a control and an intervention group. The participants in the intervention group consumed an egg white pack (containing six egg whites, 96 calories, 24 g protein) as a substitute for meat products 3 days a week for 8 weeks. Finally, changes in serum albumin, hemoglobin, ferritin and iron/TIBC, erythropoietin dose and iron infusion dose were measured. RESULTS: A total of 107 dialysis patients were studied, (55 patients in egg white and 52 in control groups) with the mean age of 54.31±16.35 years and male majority (57.90%). The mean of hemoglobin concentration had no statistically significant difference at baseline (P=0.13) and after four weeks. (P=0.48), while after eight weeks, the mean hemoglobin concentration in the intervention group was significantly higher than the control group. (P=0.03) mean of synthetic erythropoietin dose after 4 and 8 weeks was significantly lower in the intervention group compared to the control group. (P=0.30, P=0.001) lower ERI values in intervention group was significantly higher than the control group. (P=0.02) CONCLUSION: We observed that consumption of egg whites led to an increase in mean hemoglobin concentration, serum iron, and albumin levels. These results suggest that egg whites could be a useful dietary intervention for dialysis patients with anemia.

20.
Microorganisms ; 12(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38930520

RESUMEN

Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA