Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
J Pharm Sci ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374691

RESUMEN

The stabilization of protein therapeutics against aggregation is crucial for maintaining their efficacy and safety. This study investigated the synergistic effects of cyclodextrins (CDs) and electrolytes at high concentrations on the stabilization of immunoglobulin G (IgG), insulin, and adeno-associated virus (AAV) vectors. The effects of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) combined with various electrolytes were evaluated using human plasma-derived IgG as a model protein. The HP-ß-CD and L(+)-arginine hydrochloride combination synergistically increased the onset temperature of protein aggregation and inhibited the formation of soluble and insoluble aggregates during long-term storage. Notably, this synergistic effect was not observed when sucrose was used instead of HP-ß-CD. Similar synergistic effects were observed with insulin and AAV vectors. The findings suggest that the stabilization mechanism could potentially involve enhanced interactions between HP-ß-CD and IgG, preventing protein-protein interactions. However, the combination did not synergistically improve the solubility of free aromatic amino acids, including tyrosine and tryptophan. This study highlights the potential of using the combination of CDs and electrolytes as a promising formulation strategy for stabilizing complex protein therapeutics. However, further studies are needed to elucidate the underlying mechanisms and generalize the approach to other proteins with varying physicochemical properties.

2.
J Pharm Sci ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173743

RESUMEN

The user of a pediatric drug includes not only the patient, but also their caregiver and healthcare provider, including nurses, doctors, and pharmacists. Therefore, adopting a patient-centric approach that focuses on all users is critical for the development of pediatric drug products. This article outlines the quality target product profile parameters and a patient-centric approach for the development of pediatric proteinbased therapies. The use environment, formulation design, and preparation and in use stability considerations are described. An acceptability profile for the various routes of parenteral administration is described with a focus on pediatric age groups. Furthermore, a risk assessment approach is presented for the selection of excipients to be utilized in pediatric protein-based biopharmaceuticals. Several case studies are included which illustrate the selection of drug product parameters such as formulation, dose volume, and route of administration with the pediatric user in mind.

3.
Drug Deliv ; 31(1): 2381340, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39041383

RESUMEN

Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.


Asunto(s)
Pulmón , Muramidasa , Tamaño de la Partícula , Polvos , Dióxido de Silicio , Dióxido de Silicio/química , Muramidasa/administración & dosificación , Muramidasa/química , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Porosidad , Polvos/química , Portadores de Fármacos/química , Administración por Inhalación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Humanos , Excipientes/química , Animales , Química Farmacéutica/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Liofilización
4.
ACS Appl Mater Interfaces ; 16(30): 38893-38904, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013021

RESUMEN

Thermal inactivation is a major bottleneck to the scalable production, storage, and transportation of protein-based reagents and therapies. Failures in temperature control both compromise protein bioactivity and increase the risk of microorganismal contamination. Herein, we report the rational design of fluorochemical additives that promiscuously bind to and coat the surfaces of proteins to enable their stable dispersion within fluorous solvents. By replacing traditional aqueous liquids with fluorinated media, this strategy conformationally rigidifies proteins to preserve their structure and function at extreme temperatures (≥90 °C). We show that fluorous protein formulations resist contamination by bacterial, fungal, and viral pathogens, which require aqueous environments for survival, and display equivalent serum bioavailability to standard saline samples in animal models. Importantly, by designing dispersants that decouple from the protein surface in physiologic solutions, we deliver a fluorochemical formulation that does not alter the pharmacologic function or safety profile of the functionalized protein in vivo. As a result, this nonaqueous protein storage paradigm is poised to open technological opportunities in the design of shelf-stable protein reagents and biopharmaceuticals.


Asunto(s)
Calor , Animales , Ratones , Proteínas/química , Proteínas/metabolismo , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología
5.
J Pharm Sci ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768756

RESUMEN

This paper reviews the structure and properties of amorphous active pharmaceutical ingredients (APIs), including small molecules and proteins, in the glassy state (below the glass transition temperature, Tg). Amorphous materials in the neat state and formulated with excipients as miscible amorphous mixtures are included, and the role of absorbed water in affecting glass structure and stability has also been considered. We defined the term "structure" to indicate the way the various molecules in a glass interact with each other and form distinctive molecular arrangements as regions or domains of varying number of molecules, molecular packing, and density. Evidence is presented to suggest that such systems generally exist as heterogeneous structures made up of high-density domains surrounded by a lower density arrangement of molecules, termed the microstructure. It has been shown that the method of preparation and the time frame for handling and storage can give rise to variable glass structures and varying physical properties. Throughout this paper, examples are given of theoretical, computer simulation, and experimental studies which focus on the nature of intermolecular interactions, the size of heterogeneous higher density domains, and the impact of such systems on the relative physical and chemical stability of pharmaceutical systems.

6.
J Pharm Sci ; 113(8): 2055-2064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810881

RESUMEN

This article evaluates the current gaps around the impact of post-manufacturing processes on the product qualities of protein-based biologics, with a focus on user centricity. It includes the evaluation of the regulatory guidance available, describes a collection of scientific literature and case studies to showcase the impact of post-manufacturing stresses on product and dosing solution quality. It also outlines the complexity of clinical handling and the need for communication, and alignment between drug providers, healthcare professionals, users, and patients. Regulatory agencies provide clear expectations for drug manufacturing processes, however, guidance supporting post-product manufacturing handling is less defined and often misaligned. This is problematic as the pharmaceutical products experience numerous stresses and processes which can potentially impact drug quality, safety and efficacy. This article aims to stimulate discussion amongst pharmaceutical developers, health care providers, device manufacturers, and public researchers to improve these processes. Patients and caregivers' awareness can be achieved by providing relevant educational material on pharmaceutical product handling.


Asunto(s)
Productos Biológicos , Humanos , Productos Biológicos/química , Proteínas/química , Control de Calidad , Industria Farmacéutica/métodos
7.
J Pharm Sci ; 113(8): 2093-2100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38692487

RESUMEN

Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.


Asunto(s)
Antibacterianos , Endopeptidasas , Geles , Animales , Femenino , Masculino , Ratones , Administración Tópica , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Endopeptidasas/administración & dosificación , Endopeptidasas/farmacocinética , Endopeptidasas/farmacología , Piel/metabolismo , Piel/efectos de los fármacos
8.
J Pharm Sci ; 113(8): 2128-2139, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772451

RESUMEN

Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems. We validated the role of APT1 by matching the polysorbate degradation fingerprint in the mAb formulation with that of a recombinant APT1 protein. Furthermore, we found an agreement between APT1 levels and PS degradation rates in the mAb formulation, and we successfully halted PS degradation using APT1-specific inhibitors ML348 and ML211. APT1 was found to co-purify with a specific mAb via hitchhiking mechanism. Our work provides a streamlined approach to identifying critical HCPs in PS degradation, supporting quality-by-design principles in pharmaceutical development.


Asunto(s)
Anticuerpos Monoclonales , Polisorbatos , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/química , Polisorbatos/química , Animales , Tioléster Hidrolasas/metabolismo , Humanos , Cricetulus , Proteínas Recombinantes/metabolismo , Células CHO , Espectrometría de Masas/métodos , Estabilidad Proteica
9.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675488

RESUMEN

Monoclonal antibodies require careful formulation due to their inherent stability limitations. Polysorbates are commonly used to stabilize mAbs, but they are prone to degradation, which results in unwanted impurities. KLEPTOSE® HPßCD (hydroxypropyl beta-cyclodextrin) has functioned as a stable stabilizer for protein formulations in our previous research. The current study investigates the collaborative impact of combining polysorbates and HPßCD as excipients in protein formulations. The introduction of HPßCD in formulations showed it considerably reduced aggregation in two model proteins, bevacizumab and ipilimumab, following exposure to various stress conditions. The diffusion interaction parameter revealed a reduction in protein-protein interactions by HPßCD. In bevacizumab formulations, the subvisible particle counts per 0.4 mL of samples in commercial formulations vs. formulations containing both HPßCD and polysorbates subjected to distinct stressors were as follows: agitation, 87,308 particles vs. 15,350 particles; light, 25,492 particles vs. 6765 particles; and heat, 1775 particles vs. 460 particles. Isothermal titration calorimetry (ITC) measurement indicated a weak interaction between PS 80 and HPßCD, with a KD value of 74.7 ± 7.5 µM and binding sites of 5 × 10-3. Surface tension measurements illustrated that HPßCD enhanced the surface activity of polysorbates. The study suggests that combining these excipients can improve mAb stability in formulations, offering an alternative for the biopharmaceutical industry.

10.
J Pharm Sci ; 113(8): 2443-2453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679234

RESUMEN

Cyclodextrins (CDs) are versatile agents used to solubilize small drugs and stabilize proteins. This dual functionality may be particularly beneficial for antibody-drug conjugates (ADCs), as CDs may "mask" the hydrophobicity of the drug payloads. In this study, we explored the effect of CDs on the physical stability of ADCs composed of the same antibody but with different payloads (maytansinoid, auristatin, and fluorophore payloads). The aggregation of ADCs was evaluated under shaking stress conditions and elevated temperatures using size-exclusion chromatography, turbidity, and backgrounded membrane imaging. Our results showed that hydroxypropyl-(HP)-CDs effectively stabilized all ADCs during shaking stress, with increasing stabilization in the order of HPαCD < HPγCD < HPßCD at concentrations of 7.5 mM and (near) complete stabilization at 75 mM. Native CDs without surface activity also stabilized certain ADCs, although less effectively than HP-CDs under agitation stress. During quiescent incubation, the HP-CD effects were small for most ADCs. However, for an ADC with a fluorophore payload that rapidly aggregated after conjugation, HPγCD substantially reduced aggregate levels, in line with fluorescence data supporting CD-ADC interactions. In contrast, sulfobutylether-ß-CD (SBEßCD) increased the aggregation rates in all ADCs under all stress conditions. In conclusion, this study highlights the potential of appropriate CD formulations to improve the physical stability of ADCs.


Asunto(s)
Ciclodextrinas , Inmunoconjugados , Inmunoconjugados/química , Ciclodextrinas/química , Estabilidad de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Oligopéptidos/química , Aminobenzoatos/química
11.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551918

RESUMEN

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Asunto(s)
Rastreo Diferencial de Calorimetría , Excipientes , Liofilización , Poloxámero , Trehalosa , Liofilización/métodos , Poloxámero/química , Excipientes/química , Trehalosa/química , Rastreo Diferencial de Calorimetría/métodos , Sacarosa/química , Difracción de Rayos X , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Cristalización/métodos , Química Farmacéutica/métodos , Proteínas/química , Composición de Medicamentos/métodos , Congelación
12.
J Anim Sci Biotechnol ; 15(1): 55, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528636

RESUMEN

BACKGROUND: Low crude protein (CP) formulations with supplemental amino acids (AA) are used to enhance intestinal health, reduce costs, minimize environmental impact, and maintain growth performance of pigs. However, extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met. Moreover, implementing a low CP formulation can increase the net energy (NE) content in feeds causing excessive fat deposition. Additional supplementation of functional AA, coupled with low CP formulation could further enhance intestinal health and glucose metabolism, improving nitrogen utilization, and growth performance. Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs. METHODS: In Exp. 1, 90 pigs (19.7 ± 1.1 kg, 45 barrows and 45 gilts) were assigned to 3 treatments: CON (18.0% CP, supplementing Lys, Met, and Thr), LCP (16.0% CP, supplementing Lys, Met, Thr, Trp, and Val), and LCPT (16.1% CP, LCP + 0.05% SID Trp). In Exp. 2, 72 pigs (34.2 ± 4.2 kg BW) were assigned to 3 treatments: CON (17.7% CP, meeting the requirements of Lys, Met, Thr, and Trp); LCP (15.0% CP, meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and VLCP (12.8% CP, meeting Lys, Thr, Trp, Met, Val, Ile, Phe, His, and Leu). In Exp. 3, 72 pigs (54.1 ± 5.9 kg BW) were assigned to 3 treatments and fed experimental diets for 3 phases (grower 2, finishing 1, and finishing 2). Treatments were CON (18.0%, 13.8%, 12.7% CP for 3 phases; meeting Lys, Met, Thr, and Trp); LCP (13.5%, 11.4%, 10.4% CP for 3 phases; meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and LCPG (14.1%, 12.8%, 11.1% CP for 3 phases; LCP + Glu to match SID Glu with CON). All diets had 2.6 Mcal/kg NE. RESULTS: In Exp. 1, overall, the growth performance did not differ among treatments. The LCPT increased (P < 0.05) Claudin-1 expression in the duodenum and jejunum. The LCP and LCPT increased (P < 0.05) CAT-1, 4F2hc, and B0AT expressions in the jejunum. In Exp. 2, overall, the VLCP reduced (P < 0.05) G:F and BUN. The LCP and VLCP increased (P < 0.05) the backfat thickness (BFT). In Exp. 3, overall, growth performance and BFT did not differ among treatments. The LCPG reduced (P < 0.05) BUN, whereas increased the insulin in plasma. The LCP and LCPG reduced (P < 0.05) the abundance of Streptococcaceae, whereas the LCP reduced (P < 0.05) Erysipelotrichaceae, and the alpha diversity. CONCLUSIONS: When implementing low CP formulation, CP can be reduced by supplementation of Lys, Thr, Met, Trp, Val, and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition. Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.

13.
Mol Pharm ; 21(3): 1414-1423, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38386020

RESUMEN

Protein self-interactions measured via second osmotic virial coefficients (B22) and dynamic light scattering interaction parameter values (kD) are often used as metrics for assessing the favorability of protein candidates and different formulations during monoclonal antibody (MAb) product development. Model predictions of B22 or kD typically do not account for glycans, though glycosylation can potentially impact experimental MAb self-interactions. To the best of our knowledge, the impact of MAb glycosylation on the experimentally measured B22 and kD values has not yet been reported. B22 and kD values of two fully deglycosylated MAbs and their native (i.e., fully glycosylated) counterparts were measured by light scattering over a range of pH and ionic strength conditions. Significant differences between B22 and kD of the native and deglycosylated forms were observed at a range of low to high ionic strengths used to modulate the effect of electrostatic contributions. Differences were most pronounced at low ionic strength, indicating that electrostatic interactions are a contributing factor. Though B22 and kD values were statistically equivalent at high ionic strengths where electrostatics were fully screened, we observed protein-dependent qualitative differences, which indicate that steric interactions may also play a role in the observed B22 and kD differences. A domain-level coarse-grained molecular model accounting for charge differences was considered to potentially provide additional insight but was not fully predictive of the behavior across all of the solution conditions investigated. This highlights that both the level of modeling and lack of inclusion of glycans may limit existing models in making quantitatively accurate predictions of self-interactions.


Asunto(s)
Anticuerpos Monoclonales , Polisacáridos , Anticuerpos Monoclonales/química , Glicosilación , Dispersión Dinámica de Luz , Modelos Moleculares , Concentración de Iones de Hidrógeno , Concentración Osmolar
14.
Int J Biol Macromol ; 259(Pt 2): 129295, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211914

RESUMEN

Lyme disease, caused by Lyme Borrelia spirochetes, is the most common vector-borne illness in the United States. Despite its global significance, with an estimated 14.5 % seroprevalence, there is currently no licensed vaccine. Previously, we demonstrated that CspZ-YA protein conferred protection against Lyme Borrelia infection, making it a promising vaccine candidate. However, such a protein was tagged with hexahistidine, and thus not preferred for vaccine development; furthermore, the formulation to stabilize the protein was understudied. In this work, we developed a two-step purification process for tag-free E. coli-expressed recombinant CspZ-YA. We further utilized various bioassays to analyze the protein and determine the suitable buffer system for long-term storage and formulation as a vaccine immunogen. The results indicated that a buffer with a pH between 6.5 and 8.5 stabilized CspZ-YA by reducing its surface hydrophobicity and colloidal interactions. Additionally, low pH values induced a change in local spatial conformation and resulted in a decrease in α-helix content. Lastly, an optimal salinity of 22-400 mM at pH 7.5 was found to be important for its stability. Collectively, this study provides a fundamental biochemical and biophysical understanding and insights into the ideal stabilizing conditions to produce CspZ-YA recombinant protein for use in vaccine formulation and development.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Vacunas contra Enfermedad de Lyme , Escherichia coli/genética , Estudios Seroepidemiológicos , Enfermedad de Lyme/prevención & control , Proteínas de la Membrana Bacteriana Externa/química
15.
Eur J Pharm Sci ; 192: 106625, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918545

RESUMEN

Saccharides are a popular group of stabilizers in liquid, frozen and freeze dried protein formulations. The current work reviewed the stabilization mechanisms of three groups of saccharides: (i) Disaccharides, specifically sucrose and trehalose; (ii) cyclodextrins (CDs), a class of cyclic oligosaccharides; and (iii) dextrans, a class of polysaccharides. Compared to sucrose, trehalose exhibits a more pronounced preferential exclusion effect in liquid protein formulations, due to its stronger interaction with water molecules. However, trehalose obtains higher phase separation and crystallization propensity in frozen solutions, resulting in the loss of its stabilization function. In lyophilized formulations, sucrose has a higher crystallization propensity. Besides, its glass matrix is less homogeneous than that of trehalose, thus undermining its lyoprotectant function. Nevertheless, the hygroscopic nature of trehalose may result in high water absorption upon storage. Among all the CDs, the ß form is believed to have stronger interactions with proteins than the α- and γ-CDs. However, the stabilization effect, brought about by CD-protein interactions, is case-by-case - in some examples, such interactions can promote protein destabilization. The stabilization effect of hydroxypropyl-ß-cyclodextrin (HPßCD) has been extensively studied. Due to its amphiphilic nature, it can act as a surface-active agent in preventing interfacial stresses. Besides, it is a dual functional excipient in freeze dried formulations, acting as an amorphous bulking agent and lyoprotectant. Finally, dextrans, when combined with sucrose or trehalose, can be used to produce stable freeze dried protein formulations. A strong stabilization effect can be realized by low molecular weight dextrans. However, the terminal glucose in dextrans yields protein glycation, which warrants extra caution during formulation development.


Asunto(s)
Ciclodextrinas , Trehalosa , Trehalosa/química , Sacarosa/química , Ciclodextrinas/química , Dextranos/química , Excipientes/química , Agua/química , Liofilización
16.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37926233

RESUMEN

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Asunto(s)
Productos Biológicos , Nanopartículas , Medicamentos a Granel , Proteínas/análisis , Nanopartículas/análisis , Ensayos Analíticos de Alto Rendimiento , Tamaño de la Partícula
17.
J Pharm Sci ; 113(3): 735-743, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37722452

RESUMEN

Protein products in hospitals often have to be compounded before administration to the patient. This may comprise reconstitution of lyophilizates, dilution, storage, and transport. However, the operations for compounding and administration in the hospital may lead to changes in product quality and possibly even impact patient safety. We surveyed healthcare practitioners from three clinical units using a questionnaire and open dialogue to document common procedures and their justification and to document differences in handling procedures. The survey covered dose compounding, transportation, storage and administration. One key observation was that drug vial optimization procedures were used for some products, e.g., use of one single-use vial for several patients. This included the use of spikes and needles or closed system transfer devices (CSTDs). Filters or light protection aids were used only when specified by the manufacturer. A further observation was a different handling of the overfill in pre-filled infusion containers, possibly impacting total dose. Lastly, we documented the complexity of infusion administration setups for administration of multiple drugs. In this case, flushing procedures or the placement and use of filters in the setup vary. Our study has revealed important differences in handling and administration practice. We propose that drug developers and hospitals should collaborate to establish unified handling procedures.


Asunto(s)
Hospitales , Equipos de Seguridad , Humanos , Suiza , Preparaciones Farmacéuticas , Encuestas y Cuestionarios , Composición de Medicamentos
18.
J Pharm Sci ; 113(4): 990-998, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37813303

RESUMEN

Residual volumes of infusion solutions vary greatly due to container and dimensional variances. Manufacturers use overfill to compensate, but the exact amounts vary significantly. This variability in overfill - when carrier solutions are used to dilute other parenteral preparations - may lead to variable concentrations and dosing, hence, potential risk for patients. We analyzed the overfill and residual volume of 22 pre-filled infusion containers and evaluated the impact on the (simulated) dosing accuracy of a therapeutic drug product for different handling scenarios. In addition, compendial properties of the diluents (i.e. sub-visible particles, pH, color and opalescence) were assessed. The overfill and residual volume between different containers for the same diluent varied. As container size increased, the relative volume of overfill decreased while the residual volume remained constant. The design and material of the containers (e.g. port systems) defined the residual volume. Different handling scenarios led to differences in dosing accuracy. As a result, no universal approach applicable for all containers can be defined. To ensure the right dose, it is recommended to pre-select the preferred diluent, evaluate fill volumes of carrier solutions, and assess in-use compatibility of the product solution with its diluent in terms of concentration and volume.


Asunto(s)
Embalaje de Medicamentos , Humanos , Infusiones Parenterales
19.
J Pharm Sci ; 113(4): 1054-1060, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37863428

RESUMEN

Producing solid-state formulations of biologics remains a daunting task despite the prevalent use of lyophilization and spray drying technologies in the biopharmaceutical industry. The challenges include protein stability (temperature stresses), high capital costs, particle design/controllability, shortened processing times and manufacturing considerations (scalability, yield improvements, aseptic operation, etc.). Thus, scientists/engineers are constantly working to improve existing methodologies and exploring novel dehydration/powder-forming technologies. Microglassification™ is a dehydration technology that uses solvent extraction to rapidly dehydrate protein formulations at ambient temperatures, eliminating the temperature stress experienced by biologics in traditional lyophilization and spray drying methods. The process results in microparticles that are spherical, dense, and chemically stable. In this study, we compared the molecular stability of a monoclonal antibody formulation processed by lyophilization to the same formulation processed using Microglassification™. Both powders were placed on stability for 3 months at 40 °C and 6 months at 25 °C. Both dehydration methods showed similar chemical stability, including percent monomer, charge variants, and antigen binding. These results show that Microglassification™ is viable for the production of stable solid-state monoclonal antibody formulations.


Asunto(s)
Productos Biológicos , Química Farmacéutica , Humanos , Química Farmacéutica/métodos , Anticuerpos Monoclonales/química , Deshidratación , Liofilización/métodos , Estabilidad de Medicamentos , Polvos
20.
J Pharm Sci ; 113(2): 366-376, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042344

RESUMEN

Aflibercept is a recombinant fusion protein that is commercially available for several ocular diseases impacting millions of people worldwide. Here, we use a case study approach to examine alternative liquid formulations for aflibercept for ocular delivery, utilizing different stabilizers, buffering agents, and surfactants with the goal of improving the thermostability to allow for limited storage outside the cold chain. The formulations were developed by studying the effects of pH changes, substituting amino acids for sucrose and salt, and using polysorbate 80 or poloxamer 188 instead of polysorbate 20. A formulation containing acetate, proline, and poloxamer 188 had lower rates of aggregate formation at 4, 30, and 40°C when compared to the marketed commercial formulation containing phosphate, sucrose, sodium chloride, and polysorbate 20. Further studies examining subvisible particles after exposure to a transport stress and long-term stability at 4°C, post-translational modifications by multi-attribute method, purity by reduced and non-reduced capillary electrophoresis, and potency by cell proliferation also demonstrated a comparable or improved stability for the enhanced formulation of acetate, proline, and poloxamer 188. This enhanced stability could enable limited storage outside of the cold chain, allowing for easier distribution in low to middle income countries.


Asunto(s)
Poloxámero , Polisorbatos , Receptores de Factores de Crecimiento Endotelial Vascular , Humanos , Polisorbatos/química , Proteínas Recombinantes de Fusión , Cloruro de Sodio , Acetatos , Sacarosa , Prolina , Estabilidad de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA