Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 35(8): 1826-1837, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39057601

RESUMEN

Labeling with deuterium oxide (D2O) has emerged as one of the preferred approaches for measuring the synthesis of individual proteins in vivo. In these experiments, the synthesis rates of proteins are determined by modeling mass shifts in peptides during the labeling period. This modeling depends on a theoretical maximum enrichment determined by the number of labeling sites (NEH) of each amino acid in the peptide sequence. Currently, NEH is determined from one set of published values. However, it has been demonstrated that NEH can differ between species and potentially tissues. The goal of this work was to determine the number of NEH for each amino acid within a given experiment to capture the conditions unique to that experiment. We used four methods to compute the NEH values. To test these approaches, we used two publicly available data sets. In a de novo approach, we compute NEH values and the label enrichment from the abundances of three mass isotopomers. The other three methods use the complete isotope profiles and body water enrichment in deuterium as an input parameter. They determine the NEH values by (1) minimizing the residual sum of squares, (2) from the mole percent excess of labeling, and (3) the time course profile of the depletion of the relative isotope abundance of monoisotope. In the test samples, the method using residual sum of squares performed the best. The methods are implemented in a tool for determining the NEH for each amino acid within a given experiment to use in the determination of protein synthesis rates using D2O.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Animales , Aminoácidos/química , Aminoácidos/análisis , Aminoácidos/metabolismo , Óxido de Deuterio , Cromatografía Líquida con Espectrometría de Masas/métodos , Péptidos/química , Péptidos/análisis , Proteínas/química , Proteínas/análisis , Proteínas/metabolismo
2.
Neurobiol Dis ; 196: 106524, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705490

RESUMEN

αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.


Asunto(s)
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Semivida , Animales , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Proteostasis/fisiología , Neuronas/metabolismo
3.
Cell Rep Methods ; 4(5): 100760, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677284

RESUMEN

The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Organoides , Neoplasias Pancreáticas , Proteoma , Organoides/metabolismo , Organoides/patología , Proteoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Marcaje Isotópico , Proteómica/métodos
4.
Cell Rep ; 43(3): 113928, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38461413

RESUMEN

Elucidating the complex relationships between mRNA and protein expression at high spatiotemporal resolution is critical for unraveling multilevel gene regulation and enhancing mRNA-based developmental analyses. In this study, we conduct a single-cell analysis of mRNA and protein expression of transcription factors throughout C. elegans embryogenesis. Initially, cellular co-presence of mRNA and protein is low, increasing to a medium-high level (73%) upon factoring in delayed protein synthesis and long-term protein persistence. These factors substantially affect mRNA-protein concordance, leading to potential inaccuracies in mRNA-reliant gene detection and specificity characterization. Building on the learned relationship, we infer protein presence from mRNA expression and demonstrate its utility in identifying tissue-specific genes and elucidating relationships between genes and cells. This approach facilitates identifying the role of sptf-1/SP7 in neuronal lineage development. Collectively, this study provides insights into gene expression dynamics during rapid embryogenesis and approaches for improving the efficacy of transcriptome-based developmental analyses.


Asunto(s)
Caenorhabditis elegans , Transcriptoma , Animales , Transcriptoma/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Análisis Espacio-Temporal , Regulación del Desarrollo de la Expresión Génica
5.
Bio Protoc ; 13(11): e4690, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37323633

RESUMEN

Cycloheximide (CHX) is a small molecule derived from Streptomyces griseus that acts as fungicide. As a ribosome inhibitor, CHX can restrict the translation elongation of eukaryotic protein synthesis. Once protein synthesis is inhibited by CHX, the level of intracellular proteins decreases by degradation through the proteasome or lysosome system. Thus, the CHX chase assay is widely recognized and used to observe intracellular protein degradation and to determine the half-life of a given protein in eukaryotes. Here, we present a complete experimental procedure of the CHX chase assay. Graphical overview.

6.
Chembiochem ; 24(16): e202300108, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37166757

RESUMEN

Controlled protein degradation by the ubiquitin-proteasome pathway is critical for almost all cellular processes. E3 ubiquitin ligases are responsible for targeting proteins for ubiquitylation and subsequent proteasomal degradation with spatial and temporal precision. While studies have revealed various E3-substrate pairs involved in distinct biological processes, the complete substrate profiles of individual E3 ligases are largely unknown. Here we report a new approach to identify substrates of an E3 ligase for proteasomal degradation using unnatural amino acid incorporation pulse-chase proteomics (degradomics). Applying this approach, we determine the steady-state substrates of the C-terminal to LisH (CTLH) E3 ligase, a multi-component complex with poorly defined substrates. By comparing the proteome degradation profiles of active and inactive CTLH-expressing cells, we successfully identify previously known and new potential substrates of CTLH ligase. Altogether, degradomics can comprehensively identify degradation substrates of an E3 ligase, which can be adapted for other E3 ligases in various cellular contexts.


Asunto(s)
Proteómica , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteolisis , Ubiquitinas/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769128

RESUMEN

Protein turnover rate is finely regulated through intracellular mechanisms and signals that are still incompletely understood but that are essential for the correct function of cellular processes. Indeed, a dysfunctional proteostasis often impacts the cell's ability to remove unfolded, misfolded, degraded, non-functional, or damaged proteins. Thus, altered cellular mechanisms controlling protein turnover impinge on the pathophysiology of many diseases, making the study of protein synthesis and degradation rates an important step for a more comprehensive understanding of these pathologies. In this manuscript, we describe the application of a dynamic-SILAC approach to study the turnover rate and the abundance of proteins in a cellular model of diabetic nephropathy. We estimated protein half-lives and relative abundance for thousands of proteins, several of which are characterized by either an altered turnover rate or altered abundance between diabetic nephropathic subjects and diabetic controls. Many of these proteins were previously shown to be related to diabetic complications and represent therefore, possible biomarkers or therapeutic targets. Beside the aspects strictly related to the pathological condition, our data also represent a consistent compendium of protein half-lives in human fibroblasts and a rich source of important information related to basic cell biology.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Proteínas/metabolismo , Proteolisis , Biosíntesis de Proteínas , Fibroblastos/metabolismo
8.
Trends Biochem Sci ; 48(2): 106-118, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36163144

RESUMEN

The orchestration of protein production and degradation, and the regulation of protein lifetimes, play a central role in the majority of biological processes. Recent advances in proteomics have enabled the estimation of protein half-lives for thousands of proteins in vivo. What is the utility of these measurements, and how can they be leveraged to interpret the proteome changes occurring during development, aging, and disease? This opinion article summarizes leading technical approaches and highlights their strengths and weaknesses. We also disambiguate frequently used terminology, illustrate recent mechanistic insights, and provide guidance for interpreting and validating protein turnover measurements. Overall, protein lifetimes, coupled to estimates of protein levels, are essential for obtaining a deep understanding of mammalian biology and the basic processes defining life itself.


Asunto(s)
Mamíferos , Proteoma , Animales , Proteómica , Proteolisis
9.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361894

RESUMEN

The Bax protein is a pro-apoptotic protein belonging to the Bcl-2 family, involved in inducing apoptosis at the mitochondrial level. Regulating the protein levels of Bax is essential to enhancing apoptosis. In the current study, we ascertained the presence of deubiquitinating enzymes (DUBs) associated with Bax by performing the yeast two-hybrid screening (Y2H). We determined that ubiquitin-specific protease 12 (USP12), one of the DUBs, is associated with Bax. The binding of USP12 to Bax shows the interaction as a DUB, which regulates ubiquitination on Bax. Taken together, we believe that USP12 regulates Bax by detaching ubiquitin on K63-linked chains, indicating that USP12 affects the cellular functions of Bax, but it is not related with proteasomal degradation. The half-life of the Bax protein was determined by performing the site-directed mutagenesis of putative ubiquitination sites on Bax (K128R, K189R, and K190R). Of these, Bax (K128R and K190R) showed less ubiquitination; therefore, we compared the half-life of Bax (WT) and Bax K mutant forms in vitro. Interestingly, Bax (K189R) showed a higher ubiquitination level and shorter half-life than Bax (WT), and the (K128R and K190R) mutant form has a longer half-life than Bax (WT).


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Ubiquitina Tiolesterasa , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Ubiquitinación , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Apoptosis
10.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563650

RESUMEN

(1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor (FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and FXR is highly correlated with the progression of cancers. The aim of this study was to verify the role of FXR in bladder cancer cells. (2) Methods: A FXR overexpressed system was established to investigate the effect of cell viability, migration, adhesion, and angiogenesis in low-grade TSGH8301 and high-grade T24 cells. (3) Results: After FXR overexpression, the ability of migration, adhesion, invasion and angiogenesis of bladder cancer cells declined significantly. Focal adhesive complex, MMP2, MMP9, and angiogenic-related proteins were decreased, while FXR was overexpressed in bladder cancer cells. Moreover, FXR overexpression reduced vascular endothelial growth factor mRNA and protein expression and secretion in bladder cancer cells. After treatment with the proteosome inhibitor MG132, the migration, adhesion and angiogenesis caused by FXR overexpression were all reversed in bladder cancer cells. (4) Conclusions: These results may provide evidence on the role of FXR in bladder cancer, and thus may improve the therapeutic efficacy of urothelial carcinoma in the future.


Asunto(s)
Carcinoma de Células Transicionales , Receptores Citoplasmáticos y Nucleares/metabolismo , Neoplasias de la Vejiga Urinaria , Línea Celular Tumoral , Femenino , Humanos , Masculino , Neovascularización Patológica/genética , Complejo de la Endopetidasa Proteasomal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular
11.
Cell Rep ; 39(3): 110703, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443162

RESUMEN

The current model of the mammalian circadian clock describes cell-autonomous and negative feedback-driven circadian oscillation of Cry and Per transcription as the core circadian rhythm generator. However, the actual contribution of this oscillation to circadian rhythm generation remains undefined. Here we perform targeted disruption of cis elements indispensable for cell-autonomous Cry oscillation. Mice lacking overt cell-autonomous Cry oscillation show robust circadian rhythms in locomotor activity. In addition, tissue-autonomous circadian rhythms are robust in the absence of overt Cry oscillation. Unexpectedly, although the absence of overt Cry oscillation leads to severe attenuation of Per oscillation at the cell-autonomous level, circadian rhythms in Per2 accumulation remain robust. As a mechanism to explain this counterintuitive result, Per2 half-life shows cell-autonomous circadian rhythms independent of Cry and Per oscillation. The cell-autonomous circadian clock may therefore remain partially functional even in the absence of overt Cry and Per oscillation because of circadian oscillation in Per2 degradation.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Locomoción , Mamíferos/metabolismo , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046019

RESUMEN

The use of biologics in the treatment of numerous diseases has increased steadily over the past decade due to their high specificities, low toxicity, and limited side effects. Despite this success, peptide- and protein-based drugs are limited by short half-lives and immunogenicity. To address these challenges, we use a genomically recoded organism to produce genetically encoded elastin-like polypeptide-protein fusions containing multiple instances of para-azidophenylalanine (pAzF). Precise lipidation of these pAzF residues generated a set of sequence-defined synthetic biopolymers with programmable binding affinity to albumin without ablating the activity of model fusion proteins, and with tunable blood serum half-lives spanning 5 to 94% of albumin's half-life in a mouse model. Our findings present a proof of concept for the use of genetically encoded bioorthogonal conjugation sites for multisite lipidation to tune protein stability in mouse serum. This work establishes a programmable approach to extend and tune the half-life of protein or peptide therapeutics and a technical foundation to produce functionalized biopolymers endowed with programmable chemical and biophysical properties with broad applications in medicine, materials science, and biotechnology.


Asunto(s)
Biopolímeros/química , Lípidos/química , Péptidos/química , Proteínas/química , Aminoácidos , Animales , Semivida , Ratones , Ingeniería de Proteínas/métodos , Biología Sintética/métodos
13.
Front Cell Dev Biol ; 9: 722560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557490

RESUMEN

Assessing the stability and degradation of proteins is central to the study of cellular biological processes. Here, we describe a novel pulse-chase method to determine the half-life of cellular proteins that overcomes the limitations of other commonly used approaches. This method takes advantage of pulse-labeling of nascent proteins in living cells with the bioorthogonal amino acid L-azidohomoalanine (AHA) that is compatible with click chemistry-based modifications. We validate this method in both mammalian and yeast cells by assessing both over-expressed and endogenous proteins using various fluorescent and chemiluminescent click chemistry-compatible probes. Importantly, while cellular stress responses are induced to a limited extent following live-cell AHA pulse-labeling, we also show that this response does not result in changes in cell viability and growth. Moreover, this method is not compromised by the cytotoxicity evident in other commonly used protein half-life measurement methods and it does not require the use of radioactive amino acids. This new method thus presents a versatile, customizable, and valuable addition to the toolbox available to cell biologists to determine the stability of cellular proteins.

14.
Proteins ; 88(7): 889-909, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31999378

RESUMEN

We investigated the structure and Brownian rotational motion of the PEST region (201-268) from human c-Myc oncoprotein, whose overexpression/dysregulation is associated with various types of cancer. The 77-residue PEST fragment revealed a large Stokes radius (~3.1 nm) and CD spectrum highlighting abundance of disordered structure. Changes in structure/dynamics at two specific sites in PEST degron were observed using time-resolved fluorescence spectroscopy by labeling Cys9 near N-terminal with dansyl probe and inserting a Trp70 near C-terminal (PEST M1). Trp in PEST M1 at pH 3 was inaccessible to quencher, showed hindered segmental motion and slow global rotation (~30 ns) in contrast to N-terminal where the dansyl probe was free, exposed with fast global rotation (~5 ns). Remarkably, this large monomeric structure at acidic pH was retained irrespective of ionic strength (0.03-0.25 M) and partially so in presence of 6 M Gdn.HCl. With gradual increase in pH, a structural transition (~pH 4.8) into a more exposed and freely rotating Trp was noticeable. Interestingly, the induced structure at C-terminal also influenced the dynamics of dansyl probe near N-terminal, which otherwise remained unstructured at pH > 5. FRET measurements confirmed a 11 Å decrease in distance between dansyl and indole at pH 4 compared to pH 9, coinciding with enhanced ANS binding and increase in strand/helix population in both PEST fragments. The protonation of glutamate/aspartate residues in C-terminal region of PEST is implicated in this disorder-order transition. This may have a bearing on the role of PEST in endocytic trafficking of eukaryotic proteins.


Asunto(s)
Cisteína/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Neoplasias/química , Proteínas Proto-Oncogénicas c-myc/química , Triptófano/química , Secuencia de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Clonación Molecular , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Indoles/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilcolinas/química , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Coloración y Etiquetado/métodos , Triptófano/metabolismo
15.
J Neurochem ; 151(4): 520-533, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31357232

RESUMEN

Protein degradation is a crucial regulatory process in maintaining cellular proteostasis. The selective degradation of intracellular proteins controls diverse cellular and biochemical processes in all kingdoms of life. Targeted protein degradation is implicated in controlling the levels of regulatory proteins as well as eliminating misfolded and any otherwise abnormal proteins. Deregulation of protein degradation is concomitant with the progression of various neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Thus, methods of measuring metabolic half-lives of proteins greatly influence our understanding of the diverse functions of proteins in mammalian cells including neuronal cells. Historically, protein degradation rates have been studied via exploiting methods that estimate overall protein degradation or focus on few individual proteins. Notably, with the recent technical advances and developments in proteomic and imaging techniques, it is now possible to measure degradation rates of a large repertoire of defined proteins and analyze the degradation profile in a detailed spatio-temporal manner, with the aim of determining proteome-wide protein stabilities upon different physiological conditions. Herein, we discuss some of the classical and novel methods for determining protein degradation rates highlighting the crucial role of some state of art approaches in deciphering the global impact of dynamic nature of targeted degradation of cellular proteins. This article is part of the Special Issue "Proteomics".


Asunto(s)
Células/metabolismo , Proteolisis , Proteómica/métodos , Proteostasis , Animales , Humanos , Mamíferos/metabolismo
16.
Angew Chem Int Ed Engl ; 58(5): 1392-1396, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30474173

RESUMEN

Protein therapeutics are increasingly used to treat various diseases, yet they often suffer from short serum half-lives. An emerging strategy to extend lifetime in vivo is to attach fatty acids onto proteins to increase their binding to human serum albumin (HSA). Herein, the genetic encoding of ϵ-N-heptanoyl-l-lysine (HepoK) is reported, which introduces a fatty-acid-containing amino acid into proteins with exquisite site-specificity and homogeneity, overcoming issues associated with existing chemical conjugation methods. The expression in E .coli and purification of HepoK-incorporated glucagon-like peptide-1 (GLP1) is demonstrated. GLP1(HepoK) showed stronger binding to HSA than GLP1(WT), without impairing the stimulation of the GLP1 receptor in cells. Moreover, GLP1(HepoK) decreased blood glucose level to the same level as GLP1(WT) in mice, showing longer-lasting effects than GLP1(WT). HepoK incorporation will also be useful for investigating the function of protein lipidation.


Asunto(s)
Aminoácidos/genética , Código Genético/genética , Péptido 1 Similar al Glucagón/genética , Lípidos/genética , Lisina/genética , Animales , Escherichia coli/genética , Péptido 1 Similar al Glucagón/aislamiento & purificación , Semivida , Lisina/análogos & derivados , Ratones , Ratones Endogámicos ICR
17.
Bio Protoc ; 9(15): e3318, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654825

RESUMEN

Post-translational modifications play important roles in controlling protein function and can lead to altered protein stability. Protein stability can be determined after treatment with the protein synthesis inhibitor Cycloheximide. Cycloheximide is a translational inhibitor that inhibits protein synthesis via cytoplasmic ribosomes. Here we describe how to measure the stability of MYC2 in the context of regulation by FERONIA receptor kinase. First, we describe how to measure MYC2 stability in wild-type and feronia mutant; then we describe similar assays in transgenic plants expressing MYC2-FLAG and MYC2A12-FLAG (12 FERONIA phosphorylation sites are mutated to Alanine and the mutant protein is stabilized). MYC2 can be induced by mechanical touch, which can be a confounding factor in protein level measurement. In this protocol, we take that into consideration and try to achieve more accurate measurement.

18.
Int J Mass Spectrom ; 4452019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32055233

RESUMEN

Protein homeostasis (proteostasis) is a result of a dynamic equilibrium between protein synthesis and degradation. It is important for healthy cell/organ functioning and is often associated with diseases such as neurodegenerative diseases and non-Alcoholic Fatty Liver disease. Heavy water metabolic labeling, combined with liquid-chromatography and mass spectrometry (LC-MS), is a powerful approach to study proteostasis in vivo in high throughput. Traditionally, intact peptide signals are used to estimate stable isotope incorporation in time-course experiments. The time-course of label incorporation is used to extract protein decay rate constant (DRC). Intact peptide signals, computed from integration in chromatographic time and mass-to-charge ratio (m/z) domains, usually, provide an accurate estimate of label incorporation. However, sample complexity (co-elution), limited dynamic range, and low signal-to-noise ratio (S/N) may adversely interfere with the peptide signals. These artifacts complicate the DRC estimations by distorting peak shape in chromatographic time and m/z domains. Fragment ions, on the other hand, are less prone to these artifacts and are potentially well suited in aiding DRC estimations. Here, we show that the label incorporation encoded into the isotope distributions of fragment ions reflect the isotope enrichment during the metabolic labeling with heavy water. We explore the label incorporation statistics for devising practical approaches for DRC estimations.

19.
J Proteome Res ; 17(11): 3740-3748, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30265007

RESUMEN

Metabolic labeling with heavy water followed by LC-MS is a high throughput approach to study proteostasis in vivo. Advances in mass spectrometry and sample processing have allowed consistent detection of thousands of proteins at multiple time points. However, freely available automated bioinformatics tools to analyze and extract protein decay rate constants are lacking. Here, we describe d2ome-a robust, automated software solution for in vivo protein turnover analysis. d2ome is highly scalable, uses innovative approaches to nonlinear fitting, implements Grubbs' outlier detection and removal, uses weighted-averaging of replicates, applies a data dependent elution time windowing, and uses mass accuracy in peak detection. Here, we discuss the application of d2ome in a comparative study of protein turnover in the livers of normal vs Western diet-fed LDLR-/- mice (mouse model of nonalcoholic fatty liver disease), which contained 256 LC-MS experiments. The study revealed reduced stability of 40S ribosomal protein subunits in the Western diet-fed mice.


Asunto(s)
Óxido de Deuterio/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteoma/metabolismo , Proteínas Ribosómicas/metabolismo , Programas Informáticos , Animales , Cromatografía Liquida , Óxido de Deuterio/química , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Expresión Génica , Semivida , Marcaje Isotópico/métodos , Hígado/química , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Mapeo de Interacción de Proteínas/estadística & datos numéricos , Proteolisis , Proteoma/química , Proteoma/genética , Proteoma/aislamiento & purificación , Proteostasis/genética , Receptores de LDL/deficiencia , Receptores de LDL/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Espectrometría de Masas en Tándem
20.
Biochem Biophys Res Commun ; 503(4): 3017-3022, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30143261

RESUMEN

Kinetic stability of proteins determines their susceptibility to irreversibly unfold in a time-dependent process, and therefore its half-life. A residue displacement analysis of temperature-induced unfolding molecular dynamics simulations was recently employed to define the thermal flexibility of proteins. This property was found to be correlated with the activation energy barrier (Eact) separating the native from the transition state in the denaturation process. The Eact was determined from the application of a two-state irreversible model to temperature unfolding experiments using differential scanning calorimetry (DSC). The contribution of each residue to the thermal flexibility of proteins is used here to propose multiple mutations in triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), two parasites closely related by evolution. These two enzymes, taken as model systems, have practically identical structure but large differences in their kinetic stability. We constructed two functional TIM variants with more than twice and less than half the activation energy of their respective wild-type reference structures. The results show that the proposed strategy is able to identify the crucial residues for the kinetic stability in these enzymes. As it occurs with other protein properties reflecting their complex behavior, kinetic stability appears to be the consequence of an extensive network of inter-residue interactions, acting in a concerted manner. The proposed strategy to design variants can be used with other proteins, to increase or decrease their functional half-life.


Asunto(s)
Ingeniería de Proteínas/métodos , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/genética , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Mutación , Desnaturalización Proteica , Desplegamiento Proteico , Temperatura , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA