Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928418

RESUMEN

Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened inflammatory conditions, culminating in an upregulation of skeletal muscle proteolysis gene expression. The importance of delving into research on modulators of skeletal muscle atrophy, such as microRNAs (miRNAs), which play a crucial role in regulating cellular signalling pathways involved in skeletal muscle protein synthesis and degradation, has been recognised. This holds true for conditions of homeostasis as well as pathologies like cancer. However, the determination of specific miRNAs that modulate skeletal muscle atrophy in breast cancer conditions has not yet been explored. In this narrative review, we aim to identify miRNAs that could directly or indirectly influence skeletal muscle atrophy in breast cancer models to gain an updated perspective on potential therapeutic targets that could be modulated through resistance exercise training, aiming to mitigate the loss of skeletal muscle mass in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Músculo Esquelético , Atrofia Muscular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Atrofia Muscular/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/etiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Animales , Desarrollo de Músculos/genética
3.
FEBS J ; 291(10): 2191-2208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431777

RESUMEN

The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.


Asunto(s)
Factor 1 Eucariótico de Iniciación , Higromicina B , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Núcleo Celular/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Higromicina B/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo
4.
Biol Cell ; 116(5): e2300128, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38538536

RESUMEN

BACKGROUND INFORMATION: The dual-specificity phosphatase 3 (DUSP3) regulates cell cycle progression, proliferation, senescence, and DNA repair pathways under genotoxic stress. This phosphatase interacts with HNRNPC protein suggesting an involvement in the regulation of HNRNPC-ribonucleoprotein complex stability. In this work, we investigate the impact of DUSP3 depletion on functions of HNRNPC aiming to suggest new roles for this enzyme. RESULTS: The DUSP3 knockdown results in the tyrosine hyperphosphorylation state of HNRNPC increasing its RNA binding ability. HNRNPC is present in the cytoplasm where it interacts with IRES trans-acting factors (ITAF) complex, which recruits the 40S ribosome on mRNA during protein synthesis, thus facilitating the translation of mRNAs containing IRES sequence in response to specific stimuli. In accordance with that, we found that DUSP3 is present in the 40S, monosomes and polysomes interacting with HNRNPC, just like other previously identified DUSP3 substrates/interacting partners such as PABP and NCL proteins. By downregulating DUSP3, Tyr-phosphorylated HNRNPC preferentially binds to IRES-containing mRNAs within ITAF complexes preferentially in synchronized or stressed cells, as evidenced by the higher levels of proteins such as c-MYC and XIAP, but not their mRNAs such as measured by qPCR. Under DUSP3 absence, this increased phosphorylated-HNRNPC/RNA interaction reduces HNRNPC-p53 binding in presence of RNAs releasing p53 for specialized cellular responses. Similarly, to HNRNPC, PABP physically interacts with DUSP3 in an RNA-dependent manner. CONCLUSIONS AND SIGNIFICANCE: Overall, DUSP3 can modulate cellular responses to genotoxic stimuli at the translational level by maintaining the stability of HNRNPC-ITAF complexes and regulating the intensity and specificity of RNA interactions with RRM-domain proteins.


Asunto(s)
Daño del ADN , Fosfatasa 3 de Especificidad Dual , Ribonucleoproteína Heterogénea-Nuclear Grupo C , ARN Mensajero , Humanos , Fosfatasa 3 de Especificidad Dual/metabolismo , Fosfatasa 3 de Especificidad Dual/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Fosforilación , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo
5.
Brain Res ; 1823: 148679, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972846

RESUMEN

Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells. Here, we investigated whether SUMOylation globally impacts the sEV protein cargo. For this, sEVs were isolated from primary cultures of astrocytes by ultracentrifugation or using a commercial sEV isolation kit. SUMO levels were regulated: 1) via plasmids that over-express SUMO, or 2) via experimental conditions that increase SUMOylation, i.e., by using the stress hormone corticosterone, or 3) via the SUMOylation inhibitor 2-D08 (2',3',4'-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one). Corticosterone and 2-D08 had opposing effects on the number of sEVs and on their protein cargo. Proteomic analysis showed that increased SUMOylation in corticosterone-treated or plasmid-transfected astrocytes increased the presence of proteins related to cell division, transcription, and protein translation in the derived sEVs. When sEVs derived from corticosterone-treated astrocytes were transferred to neurons to assess their impact on protein synthesis using the fluorescence non-canonical amino acid tagging assay (FUNCAT), we detected an increase in protein synthesis, while sEVs from 2-D08-treated astrocytes had no effect. Our results show that SUMO conjugation plays an important role in the modulation of the proteome of astrocyte-derived sEVs with a potential functional impact on neurons.


Asunto(s)
Vesículas Extracelulares , Proteoma , Proteoma/metabolismo , Astrocitos/metabolismo , Sumoilación , Proteómica , Corticosterona/farmacología , Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Dendritas/metabolismo
6.
Curr Protein Pept Sci ; 25(3): 189-199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38018212

RESUMEN

Skeletal muscle tissue has the critical function of mechanical support protecting the body. In addition, its functions are strongly influenced by the balanced synthesis and degradation processes of structural and regulatory proteins. The inhibition of protein synthesis and/or the activation of catabolism generally determines a pathological state or condition called muscle atrophy, a reduction in muscle mass that results in partial or total loss of function. It has been established that many pathophysiological conditions can cause a decrease in muscle mass. Skeletal muscle innervation involves stable and functional neural interactions with muscles via neuromuscular junctions and is essential for maintaining normal muscle structure and function. Loss of motor innervation induces rapid skeletal muscle fiber degeneration with activation of atrophy-related signaling and subsequent disassembly of sarcomeres, altering normal muscle function. After denervation, an inflammation stage is characterized by the increased expression of pro-inflammatory cytokines that determine muscle atrophy. In this review, we highlighted the impact of some soluble factors on the development of muscle atrophy by denervation.


Asunto(s)
Desnervación Muscular , Atrofia Muscular , Humanos , Desnervación Muscular/efectos adversos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Citocinas/metabolismo
7.
Trop Anim Health Prod ; 56(1): 13, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102489

RESUMEN

The objective of this study was to assess the impact of increasing levels of heat-treated soybean in the diet of crossbred cattle during the finishing phase on nutrient intake and digestibility, ruminal parameters, digesta passage rate, nitrogen balance, and microbial protein synthesis. Five steers, crossbred 7/8 Jersey x Zebu, fitted with rumen cannulas and with an average weight of 350 ± 50 kg, were utilized. The experimental treatments consisted of 0, 7, 14, 21, and 28% inclusion of heat-treated soybean in the total diet dry matter. The animals were randomly allocated in a 5 × 5 Latin square design. Evaluation of the animals took place over five experimental periods, each lasting 20 days. During each experimental period, the first 15 days were allocated for animal adaptation to the experimental diets, followed by five days of data collection. No significant differences were observed among the diets in terms of dry matter intake (average of 6.57 kg day-1; P = 0.615) and organic matter intake (average of 6.23 kg day-1; P = 0.832). However, heat-treated soybean had a significant impact on the digestibility of dry matter (P = 0.02), organic matter (P = 0.01), crude protein (P < 0.01), and neutral detergent fiber (P < 0.01). There was no observed change on microbial protein synthesis (average of 409.6 g day-1) in animals with the inclusion of heat-treated soybean in the diets. With each 1% inclusion of heat-treated soybean in the cattle diet, there was an increase of 0.00754 units in ruminal pH values and a reduction of 0.75839 mg dL-1 in ruminal ammoniacal nitrogen values. This study suggests that heat-treated soybean can be included in up to 15% of the dry matter in diets for finishing feedlot cattle.


Asunto(s)
Harina , Glycine max , Bovinos , Animales , Calor , Digestión , Dieta/veterinaria , Nitrógeno/metabolismo , Rumen/metabolismo , Fermentación , Alimentación Animal/análisis , Fibras de la Dieta/metabolismo
8.
J Neurochem ; 166(1): 7-9, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37414436

RESUMEN

Mychael Lourenco is an Assistant Professor of Neuroscience at the Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro. Research in his lab focusses on understanding the molecular mechanisms underlying cognitive impairment in neurodegeneration and his research on Alzheimer's disease has been recognized by many awards both in Brazil and internationally. He serves as a Reviews Editor for the Journal of Neurochemistry and led this special issue on Brain Proteostasis as a Guest Editor. Here we interviewed him to hear his thoughts on the future of neuroscience and on career development and training.


Asunto(s)
Neuroquímica , Proteostasis , Encéfalo , Brasil
9.
Biol Res ; 56(1): 28, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37237400

RESUMEN

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Asunto(s)
Sarcopenia , Ratones , Animales , Sarcopenia/inducido químicamente , Sarcopenia/patología , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Troponina I/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo
10.
Amino Acids ; 55(7): 913-929, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37258638

RESUMEN

Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.


Asunto(s)
Aminoácidos , Lisina , Animales , Bovinos , Ratas , Aminoácidos/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción , Lisina/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Temozolomida
11.
Stem Cell Rev Rep ; 19(3): 625-638, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36515764

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that mainly affects the motor system. It is a very heterogeneous disorder, so far more than 40 genes have been described as responsible for ALS. The cause of motor neuron degeneration is not yet fully understood, but there is consensus in the literature that it is the result of a complex interplay of several pathogenic processes, which include alterations in nucleocytoplasmic transport, defects in transcription and splicing, altered formation and/or disassembly of stress granules and impaired proteostasis. These defects result in protein aggregation, impaired DNA repair, mitochondrial dysfunction and oxidative stress, neuroinflammation, impaired axonal transport, impaired vesicular transport, excitotoxicity, as well as impaired calcium influx. We argue here that all the above functions ultimately lead to defects in protein synthesis. Fused in Sarcoma (FUS) is one of the genes associated with ALS. It causes ALS type 6 when mutated and is found mislocalized to the cytoplasm in the motor neurons of sporadic ALS patients (without FUS mutations). In addition, FUS plays a role in all cellular functions that are impaired in degenerating motor neurons. Moreover, ALS patients with FUS mutations present the first symptoms significantly earlier than in other forms of the disease. Therefore, the aim of this review is to further discuss ALS6, detail the cellular functions of FUS, and suggest that the localization of FUS, as well as protein synthesis rates, could be hallmarks of the ALS phenotype and thus good therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Mutación , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patología , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
12.
Biol. Res ; 56: 28-28, 2023. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1513740

RESUMEN

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Asunto(s)
Animales , Ratones , Sarcopenia/inducido químicamente , Sarcopenia/patología , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacología , Músculo Esquelético/metabolismo , Troponina I/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Ratones Endogámicos C57BL
13.
Front Microbiol ; 13: 1042675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532460

RESUMEN

Introduction: The response of enterobacteria to oxidative stress is usually considered to be regulated by transcription factors such as OxyR and SoxR. Nevertheless, several reports have shown that under oxidative stress the levels, modification and aminoacylation of tRNAs may be altered suggesting a role of codon bias in regulation of gene expression under this condition. Methods: In order to characterize the effects of oxidative stress on translation elongation we constructed a library of 61 plasmids, each coding for the green fluorescent protein (GFP) translationally fused to a different set of four identical codons. Results: Using these reporters, we observed that GFP production levels vary widely (~15 fold) when Escherichia coli K-12 is cultured in minimal media as a consequence of codon choice variations. When bacteria are cultured under oxidative stress caused by paraquat the levels of GFP produced by most clones is reduced and, in contrast to control conditions, the range of GFP levels is restricted to a ~2 fold range. Restricting elongation of particular sequences does not increase the range of GFP production under oxidative stress, but altering translation initiation rates leads to an increase in this range. Discussion: Altogether, our results suggest that under normal conditions the speed of translation elongation is in the range of the speed of initiation and, consequently, codon choice impacts the speed of protein synthesis. In contrast, under oxidative stress translation initiation becomes much slower than elongation, limiting the speed of translation such that codon choice has at most only subtle effects on the overall output of translation.

14.
Front Mol Biosci ; 9: 971811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275617

RESUMEN

Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.

15.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806204

RESUMEN

microRNAs negatively regulate gene expression by blocking translation or increasing mRNA degradation. In skeletal muscle, these molecules play important roles in adaptive responses, and ongoing investigations are necessary to understand the fine-tune regulation of skeletal muscle mass. Herein we showed that skeletal muscle overexpression of miR-29c increased fiber size and force at 7 and 30 days after electrotransfer. At both time points, AKT/mTOR pathway components were downregulated, and, surprisingly, overall protein synthesis was strongly elevated at day 7, which normalized by day 30 after pCMVmiR-29c electrotransfer. These results indicate that miR-29c expression induces skeletal muscle hypertrophy and gain of function, which involves increased overall protein synthesis in spite of the deactivation of the AKT/mTOR pathway.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
16.
Front Cell Infect Microbiol ; 12: 920425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782121

RESUMEN

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Mosquitos Vectores , Proteoma , Proteómica
17.
Trop Anim Health Prod ; 54(2): 119, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226193

RESUMEN

This study evaluated intake, apparent digestibility, ruminal parameters, nitrogen balance, and microbial protein synthesis in grazing beef cattle fed a mineral mix or combination of two coproducts (cottonseed meal and dried distiller's grains (DDG)) during the wet season. Urochloa brizantha cv. Marandu pastures were managed under continuous stocking to maintain a fixed grazing height of 25 cm using put-and-take methodology. Eight rumen cannulated Nellore steers were used to evaluate the different supplementation strategies. The experiment was composed of four treatments: (1) mineral mixed (MM; ad libitum); (2) energy-protein supplement using corn grain (energy) and cottonseed meal (protein; CS); (3) energy-protein supplement with 50% of the cottonseed meal replaced by DDG (50DDG); and (4) energy-protein supplement with 100% of the cottonseed meal replaced by DDG (100DDG). Except for MM, all supplements were supplied at a level of 0.3% of body weight (BW). A double Latin square was the experimental design performed, with eight cannulated animals, four treatments, across four experimental periods. There was a difference between dry matter and nutrient intake among treatments. The nitrogen balance was different between MM and the other treatments. There was a linear decrease in the rumen ammonia nitrogen levels under CS, 50DDG, and 100DDG. There were no treatment effects on the other parameters evaluated (P ≥ 0.10). Replacing the protein source in the supplement composition did not affect the metabolic parameters and the microbial protein synthesis. Supplementation at a rate of 0.3% BW, compared to MM supplementation, increased the nitrogen utilization efficiency in grazing cattle.


Asunto(s)
Alimentación Animal , Rumen , Alimentación Animal/análisis , Animales , Bovinos , Aceite de Semillas de Algodón/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Fermentación , Nitrógeno/metabolismo , Rumen/metabolismo , Zea mays/metabolismo
18.
Neural Regen Res ; 17(7): 1423-1430, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34916412

RESUMEN

Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.

19.
Int J Sport Nutr Exerc Metab ; 31(6): 514-521, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34504041

RESUMEN

Whole egg may have potential benefits for enhancing muscle mass, independent of its protein content. The yolk comprises ∼40% of the total protein in an egg, as well as containing several nonprotein nutrients that could possess anabolic properties (e.g., microRNAs, vitamins, minerals, lipids, phosphatidic acid and other phospholipids). Therefore, the purpose of this narrative review is to discuss the current evidence as to the possible effects of egg yolk compounds on skeletal muscle accretion beyond those of egg whites alone. The intake of whole egg seems to promote greater myofibrillar protein synthesis than egg white intake in young men. However, limited evidence shows no difference in muscle hypertrophy when comparing the consumption of whole egg versus an isonitrogenous quantity of egg white in young men performing resistance training. Although egg yolk intake seems to promote additional acute increases on myofibrillar protein synthesis, it does not seem to further enhance muscle mass when compared to egg whites when consumed as part of a high-protein dietary patterns, at least in young men. This conclusion is based on very limited evidence and more studies are needed to evaluate the effects of egg yolk (or whole eggs) intake on muscle mass not only in young men, but also in other populations such as women, older adults, and individuals with muscle wasting diseases.


Asunto(s)
Yema de Huevo , Entrenamiento de Fuerza , Anciano , Clara de Huevo , Femenino , Humanos , Masculino , Músculo Esquelético , Nutrientes
20.
Life Sci ; 279: 119665, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34087281

RESUMEN

AIMS: Although it is well established that skeletal muscle contains oxytocin (OT) receptors and OT-knockout mice show premature development of sarcopenia, the role of OT in controlling skeletal muscle mass is still unknown. Therefore, the present work aimed to determine OT's effects on skeletal muscle protein metabolism. MAIN METHODS: Total proteolysis, proteolytic system activities and protein synthesis were assessed in isolated soleus muscle from prepubertal female rats. Through in vivo experiments, rats received 3-day OT treatment (3UI.kg-1.day-1, i.p.) or saline, and muscles were harvested for mass-gain assessment. KEY FINDINGS: In vitro OT receptor stimulation reduced total proteolysis, specifically through attenuation of the lysosomal and proteasomal proteolytic systems, and in parallel activated the Akt/FoxO1 signaling and suppressed atrogenes (e.g., MuRF-1 and atrogin-1) expression induced by motor denervation. On the other hand, the protein synthesis was not altered by in vitro treatment with the OT receptor-selective agonist. Although short-term OT treatment did not change the atrogene mRNA levels, the protein synthesis was stimulated, resulting in soleus mass gain, probably through an indirect effect. SIGNIFICANCE: Taken together, these data show for the first time that OT directly inhibits the proteolytic activities of the lysosomal and proteasomal systems in rat oxidative skeletal muscle by suppressing atrogene expression via stimulation of Akt/FoxO signaling. Moreover, the data obtained from in vivo experiments suggest OT's ability to control rat oxidative skeletal muscle mass.


Asunto(s)
Anabolizantes/farmacología , Lisosomas/metabolismo , Músculo Esquelético/metabolismo , Oxitocina/farmacología , Biosíntesis de Proteínas , Proteolisis , Animales , Femenino , Lisosomas/efectos de los fármacos , Lisosomas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Estrés Oxidativo , Oxitócicos/farmacología , Ratas , Ratas Wistar , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA