RESUMEN
The flexibility of the ATP synthase's ß subunit promotes its role in the ATP synthase rotational mechanism, but its domains stability remains unknown. A reversible thermal unfolding of the isolated ß subunit (Tß) of the ATP synthase from Bacillus thermophilus PS3, tracked through circular dichroism and molecular dynamics, indicated that Tß shape transits from an ellipsoid to a molten globule through an ordered unfolding of its domains, preserving the ß-sheet residual structure at high temperature. We determined that part of the stability origin of Tß is due to a transversal hydrophobic array that crosses the ß-barrel formed at the N-terminal domain and the Rossman fold of the nucleotide-binding domain (NBD), while the helix bundle of the C-terminal domain is the less stable due to the lack of hydrophobic residues, and thus the more flexible to trigger the rotational mechanism of the ATP synthase.
Asunto(s)
Calor , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Adenosina Trifosfato/química , Dicroismo Circular , Pliegue de Proteína , Desnaturalización ProteicaRESUMEN
The mechanisms underlying the inactivation of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PDH) induced by peroxyl radicals (ROOâ) and peroxynitrite (ONOO-), were explored. G6PDH was incubated with AAPH (2,2' -azobis(2-methylpropionamidine)dihydrochloride), used as ROOâ source, and ONOO-. Enzymatic activity was assessed by NADPH generation, while oxidative modifications were analyzed by gel electrophoresis and liquid chromatography (LC) with fluorescence and mass detection. Changes in protein conformation were studied by circular dichroism (CD) and binding of the fluorescent dye ANS (1-anilinonaphthalene-8-sulfonic acid). Incubation of G6PDH (54.4 µM) with 60 mM AAPH showed an initial phase without significant changes in enzymatic activity, followed by a secondary time-dependent continuous decrease in activity to â¼59% of the initial level after 90 min. ONOO- induced a significant and concentration-dependent loss of G6PDH activity with â¼46% of the initial activity lost on treatment with 1.5 mM ONOO-. CD and ANS fluorescence indicated changes in G6PDH secondary structure with exposure of hydrophobic sites on exposure to ROOâ, but not ONOO-. LC-MS analysis provided evidence for ONOO--mediated oxidation of Tyr, Met and Trp residues, with damage to critical Met and Tyr residues underlying enzyme inactivation, but without effects on the native (dimeric) state of the protein. In contrast, studies using chloramine T, a specific oxidant of Met, provided evidence that oxidation of specific Met and Trp residues and concomitant protein unfolding, loss of dimer structure and protein aggregation are involved in G6PDH inactivation by ROOâ. These two oxidant systems therefore have markedly different effects on G6PDH structure and activity.
Asunto(s)
Aminoácidos , Leuconostoc mesenteroides , Aminoácidos/química , Glucosafosfato Deshidrogenasa/química , Oxidantes/química , Oxidación-Reducción , Peróxidos , Ácido Peroxinitroso , Desplegamiento ProteicoRESUMEN
Although membrane proteins constitute an important class of biomolecules involved in key cellular processes, study of the thermodynamic and kinetic stability of their structures is far behind that of soluble proteins. It is known that many membrane proteins become unstable when removed by detergent extraction from the lipid environment. In addition, most of them undergo irreversible denaturation, even under mild experimental conditions. This process was found to be associated with partial unfolding of the polypeptide chain exposing hydrophobic regions to water, and it was proposed that the formation of kinetically trapped conformations could be involved. In this review, we will describe some of the efforts toward understanding the irreversible inactivation of membrane proteins. Furthermore, its modulation by phospholipids, ligands, and temperature will be herein discussed.