Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros










Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407472, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847278

RESUMEN

The membranization of membrane-less coacervates paves the way for the exploitation of complex protocells with regard to structural and cell-like functional behaviors. However, the controlled transformation from membranized coacervates to vesicles remains a challenge. This can provide stable (multi)phase and (multi)compartmental architectures through the reconfiguration of coacervate droplets in the presence of (bioactive) polymers, bio(macro)molecules and/or nanoobjects. Herein, we present a continuous protocell transformation from membrane-less coacervates to membranized coacervates and, ultimately, to giant hybrid vesicles. This transformation process is orchestrated by altering the balance of non-covalent interactions through varying concentrations of an anionic terpolymer, leading to dynamic processes such as spontaneous membranization of terpolymer nanoparticles at the coacervate surface, disassembly of the coacervate phase mediated by the excess anionic charge, and the redistribution of coacervate components in membrane. The diverse protocells during the transformation course provide distinct structural features and molecular permeability. Notably, the introduction of multiphase coacervates in this continuous transformation process signifies advancements toward the creation of synthetic cells with different diffusible compartments. Our findings emphasize the highly controlled continuous structural reorganization of coacervate protocells and represents a novel step toward the development of advanced and sophisticated synthetic protocells with more precise compositions and complex (membrane) structures.

2.
Adv Mater ; : e2404607, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762764

RESUMEN

The design and construction of continuous flow biochemical reactors comprising immobilized biocatalysts have generated great interest in the efficient synthesis of value-added chemicals. Living cells use compartmentalization and reaction-diffusion processes for spatiotemporal regulation of biocatalytic reactions, and implementing these strategies into continuous flow reactors can offer new opportunities in reactor design and application. Herein, the fabrication of protocell-based continuous flow reactors for enzyme and whole-cell mediated biocatalysis is demonstrated. Semipermeable membranized coacervate vesicles are employed as model protocells that spontaneously sequester enzymes or accumulate living bacteria to produce embodied microreactors capable of single- or multiple-step catalytic reactions. By packing millions of the enzyme/bacteria-containing coacervate vesicles in a glass column, a facile, cost-effective, and modular methodology capable of performing oxidoreductase, peroxidase and lipolytic reactions, enzyme-mediated L-DOPA synthesis, and whole-cell glycolysis under continuous flow conditions, is demonstrated. It is shown that the protocell-nested enzymes and bacterial cells exhibit enhanced activities and stability under deleterious operating conditions compared with their non-encapsulated counterparts. These results provide a step toward the engineering of continuous flow reactors based on cell-like microscale agents and offer opportunities in the development of green and sustainable industrial bioprocessing.

3.
Angew Chem Int Ed Engl ; 63(30): e202406094, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38743852

RESUMEN

Lipids spontaneously assemble into vesicle-forming membranes. Such vesicles serve as compartments for even the simplest living systems. Vesicles have been extensively studied for constructing synthetic cells or as models for protocells-the cells hypothesized to have existed before life. These compartments exist almost always close to equilibrium. Life, however, exists out of equilibrium. In this work, we studied vesicle-based compartments regulated by a non-equilibrium chemical reaction network that converts activating agents. In this way, the compartments require a constant or periodic supply of activating agents to sustain themselves. Specifically, we use activating agents to condense carboxylates and phosphate esters into acyl phosphate-based lipids that form vesicles. These vesicles can only be sustained when condensing agents are present; without them, they decay. We demonstrate that the chemical reaction network can operate on prebiotic activating agents, opening the door to prebiotically plausible, self-sustainable protocells that compete for resources. In future work, such protocells should be endowed with a genotype, e.g., self-replicating RNA structures, to alter the protocell's behavior. Such protocells could enable Darwinian evolution in a prebiotically plausible chemical system.


Asunto(s)
Células Artificiales , Células Artificiales/química , Células Artificiales/metabolismo , Fosfatos/química
4.
Adv Sci (Weinh) ; : e2400712, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768125

RESUMEN

The hyperglycemic pathophysiological environment in diabetic wounds is a major obstacle that impedes the healing process. Glucose-responsive wound healing materials are a promising approach to address this challenge. In this study, complex coacervate-based protocells are introduced for diabetic wound healing. By employing a microfluidic chip with an external mechanical vibrator, uniform coacervate microdroplets are generated via electrostatic interactions between diethylaminoethyl-dextran and double-stranded DNA. The spontaneous assembly of a phospholipid membrane on the droplet surface enhances its biocompatibility. Glucose oxidase and copper peroxide nanodots are integrated into microdroplets, enabling a glucose-responsive cascade that produces hydroxyl radicals as antibacterial agents. These features contribute to efficient antibacterial activity and wound healing in diabetic mice. The present protocells facilitate intelligent wound management, and the design of cascade catalytic coacervates can contribute to the development of various smart vehicles for drug delivery.

5.
RNA Biol ; 21(1): 1-9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38785360

RESUMEN

The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.


Asunto(s)
ADN , ARN Catalítico , ARN , ADN/genética , ADN/metabolismo , ADN/química , ARN/genética , ARN/metabolismo , ARN/química , ARN Catalítico/genética , ARN Catalítico/metabolismo , Evolución Molecular , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Células Artificiales/metabolismo
6.
Theory Biosci ; 143(2): 153-160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38722466

RESUMEN

This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.


Asunto(s)
Origen de la Vida , Virus , Aminoácidos/química , Lípidos/química , Nucleótidos , ARN , Evolución Biológica
7.
Small Methods ; : e2301724, 2024 Mar 26.
Artículo en Francés | MEDLINE | ID: mdl-38530063

RESUMEN

Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.

8.
Life (Basel) ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541739

RESUMEN

Early Mars was likely habitable, but could life actually have started there? While cellular life emerged from prebiotic chemistry through a pre-Darwinian selection process relevant to both Earth and Mars, each planet posed unique selection 'hurdles' to this process. We focus on drivers of selection in prebiotic chemistry generic to Earth-like worlds and specific to Mars, such as an iron-rich surface. Iron, calcium, and magnesium cations are abundant in hydrothermal settings on Earth and Mars, a promising environment for an origin of life. We investigated the impact of cations on the stability and disruption of different primitive cell membranes under different pH conditions. The relative destabilizing effect of cations on membranes observed in this study is Ca2+ > Fe2+ > Mg2+. Cation concentrations in Earth systems today are too low to disrupt primitive membranes, but on Mars concentrations could have been elevated enough to disrupt membranes during surface dehydration. Membranes and RNA interact during dehydration-rehydration cycles to mutually stabilize each other in cation-rich solutions, and optimal membrane composition can be 'selected' by environmental factors such as pH and cation concentrations. We introduce an approach that considers how life may have evolved differently under the Martian planetary conditions and selective pressures.

9.
Small ; : e2311255, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415816

RESUMEN

Multicellular organisms demonstrate a hierarchical organization where multiple cells collectively form tissues, thereby enabling higher-order cooperative functionalities beyond the capabilities of individual cells. Drawing inspiration from this biological organization, assemblies of multiple protocells are developed to create novel functional materials with emergent higher-order cooperative functionalities. This paper presents new artificial tissues derived from multiple vesicles, which serve as protocellular models. These tissues are formed and manipulated through non-covalent interactions triggered by a salt bridge. Exhibiting pH-sensitive reversible formation and destruction under neutral conditions, these artificial vesicle tissues demonstrate three distinct higher-order cooperative functionalities: transportation of large cargoes, photo-induced contractions, and enhanced survivability against external threats. The rapid assembly and disassembly of these artificial tissues in response to pH variations enable controlled mechanical task performance. Additionally, the self-healing property of these artificial tissues indicates robustness against external mechanical damage. The research suggests that these vesicles can detect specific pH environments and spontaneously assemble into artificial tissues with advanced functionalities. This leads to the possibility of developing intelligent materials with high environmental specificity, particularly for applications in soft robotics.

10.
Life (Basel) ; 14(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38398684

RESUMEN

The role of evolutionary theory at the origin of life is an extensively debated topic. The origin and early development of life is usually separated into a prebiotic phase and a protocellular phase, ultimately leading to the Last Universal Common Ancestor. Most likely, the Last Universal Common Ancestor was subject to Darwinian evolution, but the question remains to what extent Darwinian evolution applies to the prebiotic and protocellular phases. In this review, we reflect on the current status of evolutionary theory in origins of life research by bringing together philosophy of science, evolutionary biology, and empirical research in the origins field. We explore the various ways in which evolutionary theory has been extended beyond biology; we look at how these extensions apply to the prebiotic development of (proto)metabolism; and we investigate how the terminology from evolutionary theory is currently being employed in state-of-the-art origins of life research. In doing so, we identify some of the current obstacles to an evolutionary account of the origins of life, as well as open up new avenues of research.

11.
Nano Lett ; 24(8): 2457-2464, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373157

RESUMEN

The ability of living objects to respond rapidly en masse to various stimuli or stress is an important function in response to externally applied changes in the local environment. This occurs across many length scales, for instance, bacteria swarming in response to different stimuli or stress and macromolecular crowding within cells. Currently there are few mechanisms to induce similar autonomous behaviors within populations of synthetic protocells. Herein, we report a system in which populations of individual objects behave in a coordinated manner in response to changes in the energetic environment by the emergent self-organization of large object swarms. These swarms contain protocell populations of approximately 60 000 individuals. We demonstrate the dissipative nature of the hierarchical constructs, which persist under appropriate UV stimulation. Finally, we identify the ability of the object populations to change behaviors in an adaptive population-wide response to the local energetic environment.


Asunto(s)
Células Artificiales , Humanos , Sustancias Macromoleculares
12.
J Control Release ; 365: 176-192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992873

RESUMEN

Coacervate droplets formed by liquid-liquid phase separation have attracted considerable attention due to their ability to enrich biomacromolecules while preserving their bioactivities. However, there are challenges to develop coacervate droplets as delivery vesicles for therapeutics resulting from the lack of physiological stability and inherent lack of membranes in coacervate droplets. Herein, polylysine-polynucleotide complex coacervate droplets with favorable physiological stability are formulated to efficiently and facilely concentrate small molecules, biomacromolecules and nanoparticles without organic solvents. To improve the biocompatibility, the PEGylated phospholipid membrane is further coated on the surface of the coacervate droplets to prepare coacervate-based artificial protocells (ArtPC) with membrane-like and cytoplasm-like structures. The ArtPC can confine the cyclic catalytic system of uricase and catalase inside to degrade uric acid and deplete the toxicity of H2O2. This biofunctional ArtPC effectively reduces blood uric acid levels and prevents renal injuries in mice with persistent hyperuricemia. The ArtPC-based therapy can bridge the disciplines of synthetic biology, pharmaceutics and therapeutics.


Asunto(s)
Células Artificiales , Hiperuricemia , Animales , Ratones , Células Artificiales/química , Células Artificiales/metabolismo , Hiperuricemia/tratamiento farmacológico , Ácido Úrico , Peróxido de Hidrógeno , Citoplasma
13.
ACS Nano ; 17(23): 23772-23783, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038709

RESUMEN

There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.


Asunto(s)
Células Artificiales , Ácidos Nucleicos , ARN , Ácidos Grasos , Citratos
14.
Life (Basel) ; 13(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38137928

RESUMEN

We present a simple mathematical model that captures the evolutionary capabilities of a prebiotic compartment or protocell. In the model, the protocell contains an autocatalytic set whose chemical dynamics is coupled to the growth-division dynamics of the compartment. Bistability in the dynamics of the autocatalytic set results in a protocell that can exist with two distinct growth rates. Stochasticity in chemical reactions plays the role of mutations and causes transitions from one growth regime to another. We show that the system exhibits 'natural selection', where a 'mutant' protocell in which the autocatalytic set is active arises by chance in a population of inactive protocells, and then takes over the population because of its higher growth rate or 'fitness'. The work integrates three levels of dynamics: intracellular chemical, single protocell, and population (or ecosystem) of protocells.

15.
bioRxiv ; 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873423

RESUMEN

Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37902731

RESUMEN

Autonomous motion of enzyme-powered motors has important implications for drug delivery, cell-cell communication, and protocell engineering. Although many of these systems are inspired by the motion of biological cells, most of them lack key structural features, like micrometer-sized boundaries and aqueous compartments, and rely on bubble propulsion to generation motion. In this study, we use droplet microfluidics to generate large populations of cell-sized microcapsules with poly(lactic-co-glycolic acid) shells and functionalize their surfaces with the enzyme urease to drive their motion. We adjust the number of surface functional groups for urease conjugation by preparing microcapsules with two different surfactants, poly(vinyl alcohol) (PVA) and poly(ethylene-alt-maleic anhydride) (PEMA). We also tune the surface roughness of the microcapsules by varying the concentration of silica nanoparticles in the droplet middle phase. We find that PEMA plays a crucial role in increasing the grafting density of urease on the surface of smooth microcapsules, leading to active motion in the presence of urea. In addition, rough microcapsules prepared with PEMA and loaded with comparable amounts of urease move up to three times faster than their smooth counterparts, which we believe is due to an asymmetric distribution of urease on the surface, giving rise to a preferred direction of motion. Taken together, these results provide new insights into the role that various stabilizing agents play in the induction of motion by enzymatic motors prepared from microfluidics, which is a potentially powerful tool for future preparation of motile protocells in biomedicine.

17.
Life (Basel) ; 13(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37895342

RESUMEN

The emergence of Darwinian evolution represents a central point in the history of life as we know it. However, it is generally assumed that the environments in which life appeared were hydrothermal environments, with highly variable conditions in terms of pH, temperature or redox levels. Are evolutionary processes favored to appear in such settings, where the target of biological adaptation changes over time? How would the first evolving populations compete with non-evolving populations? Using a numerical model, we explore the effect of environmental variation on the outcome of the competition between evolving and non-evolving populations of protocells. Our study found that, while evolving protocells consistently outcompete non-evolving populations in stable environments, they are outcompeted in variable environments when environmental variations occur on a timescale similar to the average duration of a generation. This is due to the energetic burden represented by adaptation to the wrong environmental conditions. Since the timescale of temperature variation in natural hydrothermal settings overlaps with the average prokaryote generation time, the current work indicates that a solution must have been found by early life to overcome this threshold.

18.
Angew Chem Int Ed Engl ; 62(41): e202309318, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37549224

RESUMEN

Complex coacervation describes the liquid-liquid phase separation of oppositely charged polymers. Active coacervates are droplets in which one of the electrolyte's affinity is regulated by chemical reactions. These droplets are particularly interesting because they are tightly regulated by reaction kinetics. For example, they serve as a model for membraneless organelles that are also often regulated by biochemical transformations such as post-translational modifications. They are also a great protocell model or could be used to synthesize life-they spontaneously emerge in response to reagents, compete, and decay when all nutrients have been consumed. However, the role of the unreactive building blocks, e.g., the polymeric compounds, is poorly understood. Here, we show the important role of the chemically innocent, unreactive polyanion of our chemically fueled coacervation droplets. We show that the polyanion drastically influences the resulting droplets' life cycle without influencing the chemical reaction cycle-either they are very dynamic or have a delayed dissolution. Additionally, we derive a mechanistic understanding of our observations and show how additives and rational polymer design help to create the desired coacervate emulsion life cycles.

19.
Small Methods ; 7(12): e2300530, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574259

RESUMEN

It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.


Asunto(s)
Células Artificiales , Ácidos Grasos , Emulsiones , Aceites , Agua
20.
Small Methods ; 7(12): e2300422, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438327

RESUMEN

Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.


Asunto(s)
Células Artificiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA